Advertisement

Transcriptional Regulation of Haematopoietic Stem Cells

  • Adam C. Wilkinson
  • Berthold GöttgensEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 786)

Abstract

Haematopoietic stem cells (HSCs) are a rare cell population found in the bone marrow of adult mammals and are responsible for maintaining the entire haematopoietic system. Definitive HSCs are produced from mesoderm during embryonic development, from embryonic day 10 in the mouse. HSCs seed the foetal liver before migrating to the bone marrow around the time of birth. In the adult, HSCs are largely quiescent but have the ability to divide to self-renew and expand, or to proliferate and differentiate into any mature haematopoietic cell type. Both the specification of HSCs during development and their cellular choices once formed are tightly controlled at the level of transcription. Numerous transcriptional regulators of HSC specification, expansion, homeostasis and differentiation have been identified, primarily from analysis of mouse gene knockout experiments and transplantation assays. These include transcription factors, epigenetic modifiers and signalling pathway effectors. This chapter reviews the current knowledge of these HSC transcriptional regulators, predominantly focusing on the transcriptional regulation of mouse HSCs, although transcriptional regulation of human HSCs is also mentioned where relevant. Due to the breadth and maturity of this field, we have prioritised recently identified examples of HSC transcriptional regulators. We go on to highlight additional layers of control that regulate expression and activity of HSC transcriptional regulators and discuss how chromosomal translocations that result in fusion proteins of these HSC transcriptional regulators commonly drive leukaemias through transcriptional dysregulation.

Keywords

bHLH • Haemangioblast • Haematopoietic stem cells • Homeobox • Leukaemia 

References

  1. 1.
    Krause DS, Theise ND, Collector MI, Henegariu O et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105(3):369–377PubMedGoogle Scholar
  2. 2.
    Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19(10):1129–1155PubMedGoogle Scholar
  3. 3.
    Medvinsky A, Rybtsov S, Taoudi S (2011) Embryonic origin of the adult hematopoietic system: advances and questions. Development 138(6):1017–1031PubMedGoogle Scholar
  4. 4.
    Silver L, Palis J (1997) Initiation of murine embryonic erythropoiesis: a spatial analysis. Blood 89(4):1154–1164PubMedGoogle Scholar
  5. 5.
    Medvinsky AL, Samoylina NL, Muller AM, Dzierzak EA (1993) An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364(6432):64–67PubMedGoogle Scholar
  6. 6.
    Muller AM, Medvinsky A, Strouboulis J, Grosveld F et al (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1(4):291–301PubMedGoogle Scholar
  7. 7.
    Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86(6):897–906PubMedGoogle Scholar
  8. 8.
    Lancrin C, Sroczynska P, Stephenson C, Allen T et al (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457(7231):892–895PubMedGoogle Scholar
  9. 9.
    Kataoka H, Hayashi M, Nakagawa R, Tanaka Y et al (2011) Etv2/ER71 induces vascular mesoderm from Flk1 + PDGFR{alpha} + primitive mesoderm. Blood 118:6975–6986PubMedGoogle Scholar
  10. 10.
    Lee D, Park C, Lee H, Lugus JJ et al (2008) ER71 acts downstream of BMP, notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2(5):497–507PubMedGoogle Scholar
  11. 11.
    Liu F, Kang I, Park C, Chang LW et al (2012) ER71 specifies Flk-1+ hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling. Blood 119(14):3295–3305PubMedGoogle Scholar
  12. 12.
    Kallianpur AR, Jordan JE, Brandt SJ (1994) The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood 83(5):1200–1208PubMedGoogle Scholar
  13. 13.
    Gottgens B, Broccardo C, Sanchez MJ, Deveaux S et al (2004) The scl +18/19 stem cell enhancer is not required for hematopoiesis: identification of a 5 bifunctional hematopoietic-endothelial enhancer bound by Fli-1 and Elf-1. Mol Cell Biol 24(5):1870–1883PubMedGoogle Scholar
  14. 14.
    Gottgens B, Nastos A, Kinston S, Piltz S et al (2002) Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J 21(12):3039–3050PubMedGoogle Scholar
  15. 15.
    Ogilvy S, Ferreira R, Piltz SG, Bowen JM et al (2007) The SCL +40 enhancer targets the midbrain together with primitive and definitive hematopoiesis and is regulated by SCL and GATA proteins. Mol Cell Biol 27(20):7206–7219PubMedGoogle Scholar
  16. 16.
    Delabesse E, Ogilvy S, Chapman MA, Piltz SG et al (2005) Transcriptional regulation of the SCL locus: identification of an enhancer that targets the primitive erythroid lineage in vivo. Mol Cell Biol 25(12):5215–5225PubMedGoogle Scholar
  17. 17.
    Okuda T, van Deursen J, Hiebert SW, Grosveld G et al (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84(2):321–330PubMedGoogle Scholar
  18. 18.
    Wang Q, Stacy T, Miller JD, Lewis AF et al (1996) The CBF subunit is essential for CBF2 (AML1) function in vivo. Cell 87(4):697–708PubMedGoogle Scholar
  19. 19.
    Sasaki K, Yagi H, Bronson RT, Tominaga K et al (1996) Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci U S A 93(22):12359–12363PubMedGoogle Scholar
  20. 20.
    Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E et al (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457(7231):887–891PubMedGoogle Scholar
  21. 21.
    Nottingham WT, Jarratt A, Burgess M, Speck CL et al (2007) Runx1-mediated hematopoietic stem-cell emergence is controlled by a gata/Ets/SCL-regulated enhancer. Blood 110(13):4188–4197PubMedGoogle Scholar
  22. 22.
    Ernst P, Fisher JK, Avery W, Wade S et al (2004) Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev Cell 6(3):437–443PubMedGoogle Scholar
  23. 23.
    McMahon KA, Hiew SYL, Hadjur S, Veiga-Fernandes H et al (2007) Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1(3):338–345PubMedGoogle Scholar
  24. 24.
    Schuettengruber B, Martinez AM, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12(12):799–814PubMedGoogle Scholar
  25. 25.
    Bertani S, Sauer S, Bolotin E, Sauer F (2011) The noncoding RNA mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 43(6):1040–1046PubMedGoogle Scholar
  26. 26.
    Kim J, Guermah M, Roeder RG (2010) The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell 140(4):491–503PubMedGoogle Scholar
  27. 27.
    Ito T, Arimitsu N, Takeuchi M, Kawamura N et al (2006) Transcription elongation factor S-II is required for definitive hematopoiesis. Mol Cell Biol 26(8):3194–3203PubMedGoogle Scholar
  28. 28.
    Huang G, Zhao X, Wang L, Elf S et al (2011) The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations. Blood 118(25):6544–6552PubMedGoogle Scholar
  29. 29.
    Minegishi N, Ohta J, Yamagiwa H, Suzuki N et al (1999) The mouse GATA-2 gene is expressed in the para-aortic splanchnopleura and aorta-gonads and mesonephros region. Blood 93(12):4196–4207PubMedGoogle Scholar
  30. 30.
    Minegishi N, Suzuki N, Yokomizo T, Pan X et al (2003) Expression and domain-specific function of GATA-2 during differentiation of the hematopoietic precursor cells in midgestation mouse embryos. Blood 102(3):896–905PubMedGoogle Scholar
  31. 31.
    Pimanda JE, Ottersbach K, Knezevic K, Kinston S et al (2007) Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hemat­opoietic development. Proc Natl Acad Sci U S A 104(45):17692–17697PubMedGoogle Scholar
  32. 32.
    Kobayashi-Osaki M, Ohneda O, Suzuki N, Minegishi N et al (2005) GATA motifs regulate early hematopoietic lineage-specific expression of the Gata2 gene. Mol Cell Biol 25(16):7005–7020PubMedGoogle Scholar
  33. 33.
    Wilson NK, Foster SD, Wang X, Knezevic K et al (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7(4):532–544PubMedGoogle Scholar
  34. 34.
    Taoudi S, Bee T, Hilton A, Knezevic K et al (2011) ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. Genes Dev 25(3):251–262PubMedGoogle Scholar
  35. 35.
    Pajcini KV, Speck NA, Pear WS (2011) Notch signaling in mammalian hematopoietic stem cells. Leukemia 25(10):1525–1532PubMedGoogle Scholar
  36. 36.
    Kumano K, Chiba S, Kunisato A, Sata M et al (2003) Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18(5):699–711PubMedGoogle Scholar
  37. 37.
    Hadland BK, Huppert SS, Kanungo J, Xue Y et al (2004) A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104(10):3097–3105PubMedGoogle Scholar
  38. 38.
    Burns CE, Traver D, Mayhall E, Shepard JL et al (2005) Hematopoietic stem cell fate is established by the notch-runx pathway. Genes Dev 19(19):2331–2342PubMedGoogle Scholar
  39. 39.
    Nakagawa M, Ichikawa M, Kumano K, Goyama S et al (2006) AML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis. Blood 108(10):3329–3334PubMedGoogle Scholar
  40. 40.
    Azcoitia V, Aracil M, Martínez-A C, Torres M (2005) The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev Biol 280(2):307–320PubMedGoogle Scholar
  41. 41.
    Hisa T, Spence SE, Rachel RA, Fujita M et al (2004) Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. EMBO J 23(2):450–459PubMedGoogle Scholar
  42. 42.
    Iacovino M, Chong D, Szatmari I, Hartweck L et al (2011) HoxA3 is an apical regulator of haemogenic endothelium. Nat Cell Biol 13(1):72–U165PubMedGoogle Scholar
  43. 43.
    Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9(2):129–136PubMedGoogle Scholar
  44. 44.
    Kumaravelu P, Hook L, Morrison AM, Ure J et al (2002) Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the ­aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129(21):4891–4899PubMedGoogle Scholar
  45. 45.
    Kim I, Saunders TL, Morrison SJ (2007) Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 130(3):470–483PubMedGoogle Scholar
  46. 46.
    Wilson A, Laurenti E, Oser G, van der Wath RC et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129PubMedGoogle Scholar
  47. 47.
    van der Wath RC, Wilson A, Laurenti E, Trumpp A et al (2009) Estimating dormant and active hematopoietic stem cell kinetics through extensive modeling of bromodeoxyuridine label-retaining cell dynamics. PLoS One 4(9):e6972PubMedGoogle Scholar
  48. 48.
    Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097):1068–1074PubMedGoogle Scholar
  49. 49.
    Mansson R, Zandi S, Bryder D, Sigvardsson M (2009) The road to commitment: lineage restriction events in hematopoiesis. In: Wickrema A, Kee B (eds) Molecular basis of hematopoiesis. Springer, New York, pp 23–46Google Scholar
  50. 50.
    Stoffel R, Ziegler S, Ghilardi N, Ledermann B et al (1999) Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proc Natl Acad Sci U S A 96(2):698–702PubMedGoogle Scholar
  51. 51.
    Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC et al (2009) Hematopoietic cytokines can instruct lineage choice. Science 325(5937):217–218PubMedGoogle Scholar
  52. 52.
    Pimanda JE, Gottgens B (2010) Gene regulatory networks governing haematopoietic stem cell development and identity. Int J Dev Biol 54(6–7):1201–1211PubMedGoogle Scholar
  53. 53.
    Novershtern N, Subramanian A, Lawton LN, Mak RH et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144(2):296–309PubMedGoogle Scholar
  54. 54.
    Lacombe J, Herblot S, Rojas-Sutterlin S, Haman A et al (2010) Scl regulates the quiescence and the long-term competence of hematopoietic stem cells. Blood 115(4):792–803PubMedGoogle Scholar
  55. 55.
    Capron C, Lécluse Y, Kaushik AL, Foudi A et al (2006) The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood 107(12):4678–4686PubMedGoogle Scholar
  56. 56.
    Souroullas GP, Salmon JM, Sablitzky F, Curtis DJ et al (2009) Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival. Cell Stem Cell 4(2):180–186PubMedGoogle Scholar
  57. 57.
    Li L, Jothi R, Cui K, Lee JY et al (2011) Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells. Nat Immunol 12(2):129–136PubMedGoogle Scholar
  58. 58.
    Yamada Y, Warren AJ, Dobson C, Forster A et al (1998) The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc Natl Acad Sci U S A 95(7):3890–3895PubMedGoogle Scholar
  59. 59.
    Soler E, Andrieu-Soler C, de Boer E, Bryne JC et al (2010) The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes Dev 24(3):277–289PubMedGoogle Scholar
  60. 60.
    Goardon N, Lambert JA, Rodriguez P, Nissaire P et al (2006) ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J 25(2):357–366PubMedGoogle Scholar
  61. 61.
    Fujiwara T, Lee HY, Sanalkumar R, Bresnick EH (2010) Building multifunctionality into a complex containing master regulators of hematopoiesis. Proc Natl Acad Sci U S A 107(47):20429–20434PubMedGoogle Scholar
  62. 62.
    Song SH, Hou CH, Dean A (2007) A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol Cell 28(5):810–822PubMedGoogle Scholar
  63. 63.
    Semerad CL, Mercer EM, Inlay MA, Weissman IL et al (2009) E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors. Proc Natl Acad Sci U S A 106(6):1930–1935PubMedGoogle Scholar
  64. 64.
    Yang Q, Kardava L, St. Leger A, Martincic K et al (2008) E47 controls the developmental integrity and cell cycle quiescence of multipotential hematopoietic progenitors. J Immunol 181(9):5885–5894PubMedGoogle Scholar
  65. 65.
    Jankovic V, Ciarrocchi A, Boccuni P, DeBlasio T et al (2007) Id1 restrains myeloid commitment, maintaining the self-renewal capacity of hematopoietic stem cells. Proc Natl Acad Sci U S A 104(4):1260–1265PubMedGoogle Scholar
  66. 66.
    Perry SS, Zhao Y, Nie L, Cochrane SW et al (2007) Id1, but not Id3, directs long-term repopulating hematopoietic stem-cell maintenance. Blood 110(7):2351–2360PubMedGoogle Scholar
  67. 67.
    Ji M, Li H, Suh HC, Klarmann KD et al (2008) Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood 112(4):1068–1077PubMedGoogle Scholar
  68. 68.
    Deed RW, Jasiok M, Norton JD (1998) Lymphoid-specific expression of the Id3 gene in hematopoietic cells—selective antagonism of E2A basic helix-loop-helix protein associated with Id3-induced differentiation of erythroleukemia cells. J Biol Chem 273(14):8278–8286PubMedGoogle Scholar
  69. 69.
    Miyazaki M, Rivera RR, Miyazaki K, Lin YC et al (2011) The opposing roles of the transcription factor E2A and its antagonist Id3 that orchestrate and enforce the naive fate of T cells. Nat Immunol 12(10):992–103PubMedGoogle Scholar
  70. 70.
    Wilson A, Murphy MJ, Oskarsson T, Kaloulis K et al (2004) c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18(22):2747–2763PubMedGoogle Scholar
  71. 71.
    Laurenti E, Varnum-Finney B, Wilson A, Ferrero I et al (2008) Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 3(6):611–624PubMedGoogle Scholar
  72. 72.
    Baena E, Ortiz M, Martínez-A C, de Alborán IM (2007) c-Myc is essential for hematopoietic stem cell differentiation and regulates Lin(−)Sca-1(+)c-Kit(−) cell generation through p21. Exp Hematol 35(9):1333–1343PubMedGoogle Scholar
  73. 73.
    Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6(12):893–904PubMedGoogle Scholar
  74. 74.
    Moens CB, Selleri L (2006) Hox cofactors in vertebrate development. Dev Biol 291(2):193–206PubMedGoogle Scholar
  75. 75.
    Argiropoulos B, Humphries RK (2007) Hox genes in hematopoiesis and leukemogenesis. Oncogene 26(47):6766–6776PubMedGoogle Scholar
  76. 76.
    Thorsteinsdottir U, Mamo A, Kroon E, Jerome L et al (2002) Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99(1):121–129PubMedGoogle Scholar
  77. 77.
    Magnusson M, Brun ACM, Miyake N, Larsson J et al (2007) HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood 109(9):3687–3696PubMedGoogle Scholar
  78. 78.
    Antonchuk J, Sauvageau G, Humphries RK (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109(1):39–45PubMedGoogle Scholar
  79. 79.
    Auvray C, Delahaye A, Pflumio F, Haddad R et al (2012) HOXC4 homeoprotein efficiently expands human hematopoietic stem cells and triggers similar molecular alterations as HOXB4. Haematologica 97(2):168–178PubMedGoogle Scholar
  80. 80.
    Fischbach NA, Rozenfeld S, Shen W, Fong S et al (2005) HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood 105(4):1456–1466PubMedGoogle Scholar
  81. 81.
    Bjornsson JM, Larsson N, Brun ACM, Magnusson M et al (2003) Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol 23(11):3872–3883PubMedGoogle Scholar
  82. 82.
    Lawrence HJ, Christensen J, Fong S, Hu YL et al (2005) Loss of expression of the hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood 106(12):3988–3994PubMedGoogle Scholar
  83. 83.
    Magnusson M, Brun ACM, Lawrence HJ, Karlsson S (2007) Hoxa9/hoxb3/hoxb4 compound null mice display severe hematopoietic defects. Exp Hematol 35(9):1421–1428PubMedGoogle Scholar
  84. 84.
    Chang CP, Jacobs Y, Nakamura T, Jenkins NA et al (1997) Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric Pbx proteins. Mol Cell Biol 17(10):5679–5687PubMedGoogle Scholar
  85. 85.
    Mann RS, Lelli KM, Joshi R (2009) Hox specificity: unique roles for cofactors and collaborators. Curr Top Dev Biol 88:63–101PubMedGoogle Scholar
  86. 86.
    DiMartino JF (2001) The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood 98(3):618–626PubMedGoogle Scholar
  87. 87.
    Ficara F, Murphy MJ, Lin M, Cleary ML (2008) Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2(5):484–496PubMedGoogle Scholar
  88. 88.
    Loughran SJ, Kruse EA, Hacking DF, de Graaf CA et al (2008) The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat Immunol 9(7):810–819PubMedGoogle Scholar
  89. 89.
    Ng AP, Loughran SJ, Metcalf D, Hyland CD et al (2011) Erg is required for self-renewal of hematopoietic stem cells during stress hematopoiesis in mice. Blood 118(9):2454–2461PubMedGoogle Scholar
  90. 90.
    Kruse EA, Loughran SJ, Baldwin TM, Josefsson EC et al (2009) Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. Proc Natl Acad Sci U S A 106(33):13814–13819PubMedGoogle Scholar
  91. 91.
    Yu S, Cui K, Jothi R, Zhao D-M et al (2011) GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells. Blood 117(7):2166–2178PubMedGoogle Scholar
  92. 92.
    Iwasaki H, Somoza C, Shigematsu H, Duprez EA et al (2005) Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106(5):1590–1600PubMedGoogle Scholar
  93. 93.
    Hock H, Meade E, Medeiros S, Schindler JW et al (2004) Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev 18(19):2336–2341PubMedGoogle Scholar
  94. 94.
    Lacorazza HD, Yamada T, Liu Y, Miyata Y et al (2006) The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell 9(3):175–187PubMedGoogle Scholar
  95. 95.
    Wang LC, Swat W, Fujiwara Y, Davidson L et al (1998) The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev 12(15):2392–2402PubMedGoogle Scholar
  96. 96.
    Ristevski S, O’Leary DA, Thornell AP, Owen MJ et al (2004) The ETS transcription factor GABPalpha is essential for early embryogenesis. Mol Cell Biol 24(13):5844–5849PubMedGoogle Scholar
  97. 97.
    Alder JK, Georgantas RW, Yu X, Civin CI (2004) KLF4 as a mediator of quiescence in hematopo­ietic stem/progenitor cells. Blood 104(11, Part 2):123B–123BGoogle Scholar
  98. 98.
    Yang J, Aguila JR, Alipio Z, Lai R et al (2011) Enhanced self-renewal of hematopoietic stem/progenitor cells mediated by the stem cell gene Sall4. J Hematol Oncol 4(1):38–38PubMedGoogle Scholar
  99. 99.
    Aguila JR, Liao W, Yang J, Avila C et al (2011) SALL4 is a robust stimulator for the expansion of hematopoietic stem cells. Blood 118(3):576–585PubMedGoogle Scholar
  100. 100.
    Galan-Caridad JM, Harel S, Arenzana TL, Hou ZE et al (2007) Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 129(2):345–357PubMedGoogle Scholar
  101. 101.
    Ku CJ, Hosoya T, Maillard I, Engel JD (2012) GATA-3 regulates hematopoietic stem cell maintenance and cell cycle entry. Blood 119(10):2242–2251PubMedGoogle Scholar
  102. 102.
    Rodrigues NP, Tipping AJ, Wang Z, Enver T (2012) GATA-2 mediated regulation of normal hematopoietic stem/progenitor cell function, myelodysplasia and myeloid leukemia. Int J Biochem Cell Biol 44(3):457–460PubMedGoogle Scholar
  103. 103.
    Zeng H, Yücel R, Kosan C, Klein-Hitpass L et al (2004) Transcription factor Gfi1 regulates ­self-renewal and engraftment of hematopoietic stem cells. EMBO J 23(20):4116–4125PubMedGoogle Scholar
  104. 104.
    Hock H, Hamblen MJ, Rooke HM, Schindler JW et al (2004) Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431(7011):1002–1007PubMedGoogle Scholar
  105. 105.
    Khandanpour C, Sharif-Askari E, Vassen L, Gaudreau M-C et al (2010) Evidence that growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells. Blood 116(24):5149–5161PubMedGoogle Scholar
  106. 106.
    Ng SY-M, Yoshida T, Zhang J, Georgopoulos K (2009) Genome-wide lineage-specific transcriptional networks underscore ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 30(4):493–507PubMedGoogle Scholar
  107. 107.
    Goyama S, Yamamoto G, Shimabe M, Sato T et al (2008) Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 3(2):207–220PubMedGoogle Scholar
  108. 108.
    Zhang Y, Stehling-Sun S, Lezon-Geyda K, Juneja SC et al (2011) PR-domain-containing Mds1-Evi1 is critical for long-term hematopoietic stem cell function. Blood 118(14):3853–3861PubMedGoogle Scholar
  109. 109.
    Jiang J, Chan YS, Loh YH, Cai J et al (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10(3):353–360PubMedGoogle Scholar
  110. 110.
    Zhang J, Tam WL, Tong GQ, Wu Q et al (2006) Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 8(10):1114–1123PubMedGoogle Scholar
  111. 111.
    Ling K-W, Ottersbach K, van Hamburg JP, Oziemlak A et al (2004) GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. J Exp Med 200(7):871–882PubMedGoogle Scholar
  112. 112.
    Tipping AJ, Pina C, Castor A, Hong D et al (2009) High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood 113(12):2661–2672PubMedGoogle Scholar
  113. 113.
    John LB, Ward AC (2011) The ikaros gene family: transcriptional regulators of hematopoiesis and immunity. Mol Immunol 48(9–10):1272–1278PubMedGoogle Scholar
  114. 114.
    Klug CA (1998) Hematopoietic stem cells and lymphoid progenitors express different ikaros isoforms, and ikaros is localized to heterochromatin in immature lymphocytes. Proc Natl Acad Sci 95(2):657–662PubMedGoogle Scholar
  115. 115.
    Nichogiannopoulou A (1999) Defects in hemopoietic stem cell activity in ikaros mutant mice. J Exp Med 190(9):1201–1214PubMedGoogle Scholar
  116. 116.
    Kumano K, Kurokawa M (2010) The role of Runx1/AML1 and Evi-1 in the regulation of hematopoietic stem cells. J Cell Physiol 222(2):282–285PubMedGoogle Scholar
  117. 117.
    Kataoka K, Sato T, Yoshimi A, Goyama S et al (2011) Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks ­hematopoietic cells with long-term multilineage repopulating activity. J Exp Med 208(12):2403–2416, jem.20110447-jem.20110447-PubMedGoogle Scholar
  118. 118.
    Aguilo F, Avagyan S, Labar A, Sevilla A et al (2011) Prdm16 is a physiologic regulator of hematopoietic stem cells. Blood 117(19):5057–5066PubMedGoogle Scholar
  119. 119.
    Deneault E, Cellot S, Faubert A, Laverdure JP et al (2009) A functional screen to identify novel effectors of hematopoietic stem cell activity. Cell 137(2):369–379PubMedGoogle Scholar
  120. 120.
    Chuikov S, Levi BP, Smith ML, Morrison SJ (2010) Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat Cell Biol 12(10):999–1006PubMedGoogle Scholar
  121. 121.
    Lieu YK, Reddy EP (2009) Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation. Proc Natl Acad Sci U S A 106(51):21689–21694PubMedGoogle Scholar
  122. 122.
    Sandberg ML, Sutton SE, Pletcher MT, Wiltshire T et al (2005) c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell 8(2):153–166PubMedGoogle Scholar
  123. 123.
    Kobayashi M, Srour EF (2011) Regulation of murine hematopoietic stem cell quiescence by Dmtf1. Blood 118(25):6562–6571PubMedGoogle Scholar
  124. 124.
    Growney JD, Shigematsu H, Li Z, Lee BH et al (2005) Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106(2):494–504PubMedGoogle Scholar
  125. 125.
    Ichikawa M, Asai T, Saito T, Seo S et al (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10(3):299–304PubMedGoogle Scholar
  126. 126.
    Ichikawa M, Goyama S, Asai T, Kawazu M et al (2008) AML1/Runx1 negatively regulates quiescent hematopoietic stem cells in adult hematopoiesis. J Immunol 180(7):4402–4408PubMedGoogle Scholar
  127. 127.
    Motoda L, Osato M, Yamashita N, Jacob B et al (2007) Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult. Stem Cells 25(12):2976–2986PubMedGoogle Scholar
  128. 128.
    Jacob B, Osato M, Yamashita N, Wang CQ et al (2010) Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood 115(8):1610–1620PubMedGoogle Scholar
  129. 129.
    Cai X, Gaudet JJ, Mangan JK, Chen MJ et al (2011) Runx1 loss minimally impacts long-term hematopoietic stem cells. PLoS One 6(12):e28430–e28430PubMedGoogle Scholar
  130. 130.
    Tsuzuki S, Hong DL, Gupta R, Matsuo K et al (2007) Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. PLoS Med 4(5):880–896Google Scholar
  131. 131.
    Challen GA, Goodell MA (2010) Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Exp Hematol 38(5):403–416PubMedGoogle Scholar
  132. 132.
    Tsuzuki S, Seto M (2012) Expansion of functionally defined mouse hematopoietic stem and progenitor cells by a short isoform of RUNX1/AML1. Blood 119(3):727–735PubMedGoogle Scholar
  133. 133.
    Talebian L, Li Z, Guo YL, Gaudet J et al (2007) T-lymphoid, megakaryocyte, and granulocyte development are sensitive to decreases in CBF beta dosage. Blood 109(1):11–21PubMedGoogle Scholar
  134. 134.
    Miller J, Horner A, Stacy T, Lowrey C et al (2002) The core-binding factor beta subunit is required for bone formation and hematopoietic maturation. Nat Genet 32(4):645–649PubMedGoogle Scholar
  135. 135.
    Link KA, Chou FS, Mulloy JC (2010) Core binding factor at the crossroads: determining the fate of the HSC. J Cell Physiol 222(1):50–56PubMedGoogle Scholar
  136. 136.
    Deguchi K, Yagi H, Inada M, Yoshizaki K et al (1999) Excessive extramedullary hematopoiesis in Cbfa1-deficient mice with a congenital lack of bone marrow. Biochem Biophys Res Commun 255(2):352–359PubMedGoogle Scholar
  137. 137.
    Komori T, Yagi H, Nomura S, Yamaguchi A et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764PubMedGoogle Scholar
  138. 138.
    Viatour P, Somervaille TC, Venkatasubrahmanyam S, Kogan S et al (2008) Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 3(4):416–428PubMedGoogle Scholar
  139. 139.
    Asai T, Liu Y, Bae N, Nimer SD (2011) The p53 tumor suppressor protein regulates hematopoietic stem cell fate. J Cell Physiol 226(9):2215–2221PubMedGoogle Scholar
  140. 140.
    Liu Y, Elf SE, Asai T, Miyata Y et al (2009) The p53 tumor suppressor protein is a critical regulator of hematopoietic stem cell behavior. Cell Cycle 8(19):3120–3124PubMedGoogle Scholar
  141. 141.
    Liu Y, Elf SE, Miyata Y, Sashida G et al (2009) p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4(1):37–48PubMedGoogle Scholar
  142. 142.
    Walkley CR, Shea JM, Sims NA, Purton LE et al (2007) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129(6):1081–1095PubMedGoogle Scholar
  143. 143.
    Kubota Y, Osawa M, Jakt LM, Yoshikawa K et al (2009) Necdin restricts proliferation of hematopoietic stem cells during hematopoietic regeneration. Blood 114(20):4383–4392PubMedGoogle Scholar
  144. 144.
    Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239(1):15–27PubMedGoogle Scholar
  145. 145.
    Bhattacharya A, Deng JM, Zhang Z, Behringer R et al (2003) The B subunit of the CCAAT box binding transcription factor complex (CBF/NF-Y) is essential for early mouse development and cell proliferation. Cancer Res 63(23):8167–8172PubMedGoogle Scholar
  146. 146.
    Zhu J, Zhang Y, Joe GJ, Pompetti R et al (2005) NF-Ya activates multiple hematopoietic stem cell (HSC) regulatory genes and promotes HSC self-renewal. Proc Natl Acad Sci U S A 102(33):11728–11733PubMedGoogle Scholar
  147. 147.
    Bungartz G, Land H, Scadden DT, Emerson SG (2012) NF-Y is necessary for hematopoietic stem cell proliferation and survival. Blood 119(6):1380–1389PubMedGoogle Scholar
  148. 148.
    Santaguida M, Schepers K, King B, Sabnis AJ et al (2009) JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 15(4):341–352PubMedGoogle Scholar
  149. 149.
    Verrecchia F, Tacheau C, Schorpp-Kistner M, Angel P et al (2001) Induction of the AP-1 members c-Jun and JunB by TGF-beta/smad suppresses early smad-driven gene activation. Oncogene 20(18):2205–2211PubMedGoogle Scholar
  150. 150.
    Min IM, Pietramaggiori G, Kim FS, Passegué E et al (2008) The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2(4):380–391PubMedGoogle Scholar
  151. 151.
    Rebel VI, Kung AL, Tanner EA, Yang H et al (2002) Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci U S A 99(23):14789–14794PubMedGoogle Scholar
  152. 152.
    Katsumoto T, Aikawa Y, Iwama A, Ueda S et al (2006) MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev 20(10):1321–1330PubMedGoogle Scholar
  153. 153.
    Chan WI, Hannah RL, Dawson MA, Pridans C et al (2011) The transcriptional coactivator Cbp regulates self-renewal and differentiation in adult hematopoietic stem cells. Mol Cell Biol 31(24):5046–5060PubMedGoogle Scholar
  154. 154.
    Nguyen AT, He J, Taranova O, Zhang Y (2011) Essential role of DOT1L in maintaining normal adult hematopoiesis. Cell Res 21(9):1370–1373PubMedGoogle Scholar
  155. 155.
    Jo SY, Granowicz EM, Maillard I, Thomas D et al (2011) Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 117(18):4759–4768PubMedGoogle Scholar
  156. 156.
    Maillard I, Hess JL (2009) The role of menin in hematopoiesis. Adv Exp Med Biol 668:51–57PubMedGoogle Scholar
  157. 157.
    Jude CD, Climer L, Xu D, Artinger E et al (2007) Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 1(3):324–337PubMedGoogle Scholar
  158. 158.
    Gan T, Jude CD, Zaffuto K, Ernst P (2010) Developmentally induced Mll1 loss reveals defects in postnatal haematopoiesis. Leukemia 24(10):1732–1741PubMedGoogle Scholar
  159. 159.
    Heuser M, Yap DB, Leung M, de Algara TR et al (2009) Loss of MLL5 results in pleiotropic hematopoietic defects, reduced neutrophil immune function, and extreme sensitivity to DNA demethylation. Blood 113(7):1432–1443PubMedGoogle Scholar
  160. 160.
    Madan V, Madan B, Brykczynska U, Zilbermann F et al (2009) Impaired function of primitive hema­topoietic cells in mice lacking the mixed-lineage-leukemia homolog MLL5. Blood 113(7):1444–1454PubMedGoogle Scholar
  161. 161.
    Zhang Y, Wong J, Klinger M, Tran MT et al (2009) MLL5 contributes to hematopoietic stem cell fitness and homeostasis. Blood 113(7):1455–1463PubMedGoogle Scholar
  162. 162.
    Konuma T, Oguro H, Iwama A (2010) Role of the polycomb group proteins in hematopoietic stem cells. Dev Growth Differ 52(6):505–516PubMedGoogle Scholar
  163. 163.
    Majewski IJ, Ritchie ME, Phipson B, Corbin J et al (2010) Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells. Blood 116(5):731–739PubMedGoogle Scholar
  164. 164.
    Iwama A, Oguro H, Negishi M, Kato Y et al (2005) Epigenetic regulation of hematopoietic stem cell self-renewal by polycomb group genes. Int J Hematol 81(4):294–300PubMedGoogle Scholar
  165. 165.
    Lessard J, Schumacher A, Thorsteinsdottir U, van Lohuizen M et al (1999) Functional antagonism of the polycomb-group genes eed and Bmi1 in hemopoietic cell proliferation. Genes Dev 13(20):2691–2703PubMedGoogle Scholar
  166. 166.
    Majewski IJ, Blewitt ME, de Graaf CA, McManus EJ et al (2008) Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity. PLoS Biol 6(4):e93PubMedGoogle Scholar
  167. 167.
    Su IH, Basavaraj A, Krutchinsky AN, Hobert O et al (2003) Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 4(2):124–131PubMedGoogle Scholar
  168. 168.
    Mochizuki-Kashio M, Mishima Y, Miyagi S, Negishi M et al (2011) Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood 118(25):6553–6561PubMedGoogle Scholar
  169. 169.
    Calés C, Román-Trufero M, Pavón L, Serrano I et al (2008) Inactivation of the polycomb group protein Ring1B unveils an antiproliferative role in hematopoietic cell expansion and cooperation with tumorigenesis associated with Ink4a deletion. Mol Cell Biol 28(3):1018–1028PubMedGoogle Scholar
  170. 170.
    Iwama A, Oguro H, Negishi M, Kato Y et al (2004) Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21(6):843–851PubMedGoogle Scholar
  171. 171.
    Kim JY, Sawada A, Tokimasa S, Endo H et al (2004) Defective long-term repopulating ability in hematopoietic stem cells lacking the polycomb-group gene rae28. Eur J Haematol 73(2):75–84PubMedGoogle Scholar
  172. 172.
    Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423(6937):255–260PubMedGoogle Scholar
  173. 173.
    Ohta H (2002) Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J Exp Med 195(6):759–770PubMedGoogle Scholar
  174. 174.
    Rizo A, Dontje B, Vellenga E, de Haan G et al (2008) Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1. Blood 111(5):2621–2630PubMedGoogle Scholar
  175. 175.
    Elderkin S, Maertens GN, Endoh M, Mallery DL et al (2007) A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin. Mol Cell 28(1):107–120PubMedGoogle Scholar
  176. 176.
    Kajiume T, Ninomiya Y, Ishihara H, Kanno R et al (2004) Polycomb group gene mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells. Exp Hematol 32(6):571–578PubMedGoogle Scholar
  177. 177.
    Smith L-L, Yeung J, Zeisig BB, Popov N et al (2011) Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells. Cell Stem Cell 8(6):649–662PubMedGoogle Scholar
  178. 178.
    Challen GA, Sun D, Jeong M, Luo M et al (2011) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44(1):23–31PubMedGoogle Scholar
  179. 179.
    Tadokoro Y, Ema H, Okano M, Li E et al (2007) De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 204(4):715–722PubMedGoogle Scholar
  180. 180.
    Trowbridge JJ, Snow JW, Kim J, Orkin SH (2009) DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5(4):442–449PubMedGoogle Scholar
  181. 181.
    Ko M, Bandukwala HS, An J, Lamperti ED et al (2011) Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci 108(35):14566–14571PubMedGoogle Scholar
  182. 182.
    Li Z, Cai X, Cai C, Wang J et al (2011) Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118(17):4509–4518PubMedGoogle Scholar
  183. 183.
    Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O et al (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20(1):11–24PubMedGoogle Scholar
  184. 184.
    Yoshida T, Hazan I, Zhang J, Ng SY et al (2008) The role of the chromatin remodeler Mi-2beta in hematopoietic stem cell self-renewal and multilineage differentiation. Genes Dev 22(9):1174–1189PubMedGoogle Scholar
  185. 185.
    Staal FJT, Clevers HC (2005) WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol 5(1):21–30PubMedGoogle Scholar
  186. 186.
    Staal FJT, Luis TC (2010) Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions. J Cell Biochem 109(5):844–849PubMedGoogle Scholar
  187. 187.
    Blank U, Karlsson G, Karlsson S (2008) Signaling pathways governing stem-cell fate. Blood 111(2):492–503PubMedGoogle Scholar
  188. 188.
    Blank U, Karlsson S (2011) The role of smad signaling in hematopoiesis and translational hematology. Leukemia 25(9):1379–1388PubMedGoogle Scholar
  189. 189.
    Purton LE, Dworkin S, Olsen GH, Walkley CR et al (2006) RARgamma is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J Exp Med 203(5):1283–1293PubMedGoogle Scholar
  190. 190.
    Kent D, Copley M, Benz C, Dykstra B et al (2008) Regulation of hematopoietic stem cells by the steel factor/KIT signaling pathway. Clin Cancer Res 14(7):1926–1930PubMedGoogle Scholar
  191. 191.
    de Graaf CA, Metcalf D (2011) Thrombopoietin and hematopoietic stem cells. Cell Cycle 10(10):1582–1589PubMedGoogle Scholar
  192. 192.
    Arai F, Hirao A, Ohmura M, Sato H et al (2004) Tie2/Angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161PubMedGoogle Scholar
  193. 193.
    Tothova Z, Gilliland DG (2007) FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1(2):140–152PubMedGoogle Scholar
  194. 194.
    Tothova Z, Kollipara R, Huntly BJ, Lee BH et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2):325–339PubMedGoogle Scholar
  195. 195.
    Miyamoto K, Araki KY, Naka K, Arai F et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1(1):101–112PubMedGoogle Scholar
  196. 196.
    Takubo K, Goda N, Yamada W, Iriuchishima H et al (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7(3):391–402PubMedGoogle Scholar
  197. 197.
    Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644PubMedGoogle Scholar
  198. 198.
    Kiritoa K, Kaushansky K (2006) Transcriptional regulation of megakaryopoiesis: thrombopoietin signaling and nuclear factors. Curr Opin Hematol 13(3):151–156Google Scholar
  199. 199.
    Dore LC, Crispino JD (2011) Transcription factor networks in erythroid cell and megakaryocyte development. Blood 118(2):231–239PubMedGoogle Scholar
  200. 200.
    Goldfarb AN (2007) Transcriptional control of megakaryocyte development. Oncogene 26(47):6795–6802PubMedGoogle Scholar
  201. 201.
    Kim SI, Bresnick EH (2007) Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 26(47):6777–6794PubMedGoogle Scholar
  202. 202.
    Dias S, Xu W, McGregor S, Kee B (2008) Transcriptional regulation of lymphocyte development. Curr Opin Genet Dev 18(5):441–448PubMedGoogle Scholar
  203. 203.
    Friedman AD (2007) Transcriptional control of granulocyte and monocyte development. Oncogene 26(47):6816–6828PubMedGoogle Scholar
  204. 204.
    Friedman AD, Keefer JR, Kummalue T, Liu HT et al (2003) Regulation of granulocyte and monocyte differentiation by CCAAT/enhancer binding protein alpha. Blood Cells Mol Dis 31(3):338–341PubMedGoogle Scholar
  205. 205.
    Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML et al (2004) Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 21(6):853–863PubMedGoogle Scholar
  206. 206.
    Suh HC, Gooya J, Renn K, Friedman AD et al (2006) C/EBP alpha determines hematopoietic cell fate in multipotential progenitor cells by inhibiting erythroid differentiation and inducing myeloid differentiation. Blood 107(11):4308–4316PubMedGoogle Scholar
  207. 207.
    Nemeth MJ, Kirby MR, Bodine DM (2006) Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation. Proc Natl Acad Sci U S A 103(37):13783–13788PubMedGoogle Scholar
  208. 208.
    Nemeth MJ, Cline AP, Anderson SM, Garrett-Beal LJ et al (2005) Hmgb3 deficiency deregulates proliferation and differentiation of common lymphoid and myeloid progenitors. Blood 105(2):627–634PubMedGoogle Scholar
  209. 209.
    Bee T, Swiers G, Muroi S, Pozner A et al (2010) Nonredundant roles for Runx1 alternative promoters reflect their activity at discrete stages of developmental hematopoiesis. Blood 115(15):3042–3050PubMedGoogle Scholar
  210. 210.
    Levanon D, Glusman C, Bangsow T, Ben-Asher E et al (2001) Architecture and anatomy of the genomic locus encoding the human leukemia-associated transcription factor RUNX1/AML1. Gene 262(1–2):23–33PubMedGoogle Scholar
  211. 211.
    Ben-Ami O, Pencovich N, Lotem J, Levanon D et al (2009) A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis. Proc Natl Acad Sci U S A 106(1):238–243PubMedGoogle Scholar
  212. 212.
    Feng J, Iwama A, Satake M, Kohu K (2009) MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally downregulating Runx1. Br J Haematol 145(3):412–423PubMedGoogle Scholar
  213. 213.
    Pozner A, Goldenberg D, Negreanu V, Le SY et al (2000) Transcription-coupled translation control of AML1/RUNX1 is mediated by cap- and internal ribosome entry site-dependent mechanisms. Mol Cell Biol 20(7):2297–2307PubMedGoogle Scholar
  214. 214.
    Pillai RS, Bhattacharyya SN, Artus CG, Zoller T et al (2005) Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309(5740):1573–1576PubMedGoogle Scholar
  215. 215.
    Humphreys DT, Westman BJ, Martin DIK, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(a) tail function. Proc Natl Acad Sci U S A 102(47):16961–16966PubMedGoogle Scholar
  216. 216.
    Biggs JR, Peterson LF, Zhang Y, Kraft AS et al (2006) AML1/RUNX1 phosphorylation by cyclin-dependent kinases regulates the degradation of AML1/RUNX1 by the anaphase-promoting complex. Mol Cell Biol 26(20):7420–7429PubMedGoogle Scholar
  217. 217.
    Guo H, Friedman AD (2011) Phosphorylation of RUNX1 by cyclin-dependent kinase reduces direct interaction with HDAC1 and HDAC3. J Biol Chem 286(1):208–215PubMedGoogle Scholar
  218. 218.
    Zhang L, Fried FB, Guo H, Friedman AD (2008) Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation. Blood 111(3):1193–1200PubMedGoogle Scholar
  219. 219.
    Yamaguchi Y, Kurokawa M, Imai Y, Izutsu K et al (2004) AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. J Biol Chem 279(15):15630–15638PubMedGoogle Scholar
  220. 220.
    Yoshida H, Kitabayashi I (2008) Chromatin regulation by AML1 complex. Int J Hematol 87(1):19–24PubMedGoogle Scholar
  221. 221.
    Zhao X, Jankovic V, Gural A, Huang G et al (2008) Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev 22(5):640–653PubMedGoogle Scholar
  222. 222.
    Chakraborty S, Sinha KK, Senyuk V, Nucifora G (2003) SUV39H1 interacts with AML1 and abrogates AML1 transactivity. AML1 is methylated in vivo. Oncogene 22(34):5229–5237PubMedGoogle Scholar
  223. 223.
    Wang L, Gural A, Sun XJ, Zhao XY et al (2011) The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 333(6043):765–769PubMedGoogle Scholar
  224. 224.
    Pimanda JE, Donaldson IJ, de Bruijn MF, Kinston S et al (2007) The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proc Natl Acad Sci U S A 104(3):840–845PubMedGoogle Scholar
  225. 225.
    Shen R, Chen M, Wang YJ, Kaneki H et al (2006) Smad6 interacts with Runx2 and mediates smad ubiquitin regulatory factor 1-induced Runx2 degradation. J Biol Chem 281(6):3569–3576PubMedGoogle Scholar
  226. 226.
    Knezevic K, Bee T, Wilson NK, Janes ME et al (2011) A Runx1-Smad6 rheostat controls Runx1 activity during embryonic hematopoiesis. Mol Cell Biol 31(14):2817–2826PubMedGoogle Scholar
  227. 227.
    Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7(4):233–245PubMedGoogle Scholar
  228. 228.
    Crans HN, Sakamoto KM (2001) Transcription factors and translocations in lymphoid and myeloid leukemia. Leukemia 15(3):313–331PubMedGoogle Scholar
  229. 229.
    Hess JL (2004) MLL: a histone methyltransferase disrupted in leukemia. Trends Mol Med 10(10):500–507PubMedGoogle Scholar
  230. 230.
    Marschalek R (2010) Mixed lineage leukemia: roles in human malignancies and potential therapy. FEBS J 277(8):1822–1831PubMedGoogle Scholar
  231. 231.
    Meyer C, Kowarz E, Hofmann J, Renneville A et al (2009) New insights to the MLL recombinome of acute leukemias. Leukemia 23(8):1490–1499PubMedGoogle Scholar
  232. 232.
    Thomas M, Gessner A, Vornlocher HP, Hadwiger P et al (2005) Targeting MLL-AF4 with short interfering RNAs inhibits clonogenicity and engraftment of t(4;11)-positive human leukemic cells. Blood 106(10):3559–3566PubMedGoogle Scholar
  233. 233.
    Thiel AT, Blessington P, Zou T, Feather D et al (2010) MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17(2):148–159PubMedGoogle Scholar
  234. 234.
    Yokoyama A, Somervaille TCP, Smith KS, Rozenblatt-Rosen O et al (2005) The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123(2):207–218PubMedGoogle Scholar
  235. 235.
    Grembecka J, He S, Shi A, Purohit T et al (2012) Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 8(3):277–284PubMedGoogle Scholar
  236. 236.
    Tan JY, Jones M, Koseki H, Nakayama M et al (2011) CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell 20(5):563–575PubMedGoogle Scholar
  237. 237.
    Yokoyama A, Lin M, Naresh A, Kitabayashi I et al (2010) A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17(2):198–212PubMedGoogle Scholar
  238. 238.
    Biswas D, Milne TA, Basrur V, Kim J et al (2011) Function of leukemogenic mixed lineage leukemia 1 (MLL) fusion proteins through distinct partner protein complexes. Proc Natl Acad Sci U S A 108(38):15751–15756PubMedGoogle Scholar
  239. 239.
    Okada Y, Feng Q, Lin YH, Jiang Q et al (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121(2):167–178PubMedGoogle Scholar
  240. 240.
    Milne TA, Kim J, Wang GG, Stadler SC et al (2010) Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol Cell 38(6):853–863PubMedGoogle Scholar
  241. 241.
    Jang MK, Mochizuki K, Zhou MS, Jeong HS et al (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19(4):523–534PubMedGoogle Scholar
  242. 242.
    Krivtsov AV, Feng Z, Lemieux ME, Faber J et al (2008) H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14(5):355–368PubMedGoogle Scholar
  243. 243.
    Daigle SR, Olhava EJ, Therkelsen CA, Majer CR et al (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65PubMedGoogle Scholar
  244. 244.
    Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G et al (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478(7370):529–533PubMedGoogle Scholar
  245. 245.
    Wang QF, Wu G, Mi SL, He FH et al (2011) MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. Blood 117(25):6895–6905PubMedGoogle Scholar
  246. 246.
    Orlovsky K, Kalinkovich A, Rozovskaia T, Shezen E et al (2011) Down-regulation of homeobox genes MEIS1 and HOXA in MLL-rearranged acute leukemia impairs engraftment and reduces proliferation. Proc Natl Acad Sci U S A 108(19):7956–7961PubMedGoogle Scholar
  247. 247.
    Arai S, Yoshimi A, Shimabe M, Ichikawa M et al (2011) Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells. Blood 117(23):6304–6314PubMedGoogle Scholar
  248. 248.
    Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S et al (2004) Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 24(2):617–628PubMedGoogle Scholar
  249. 249.
    Zuber J, Rappaport AR, Luo WJ, Wang E et al (2011) An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev 25(18):1628PubMedGoogle Scholar
  250. 250.
    Bernt KM, Zhu N, Sinha AU, Vempati S et al (2011) MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20(1):66–78PubMedGoogle Scholar
  251. 251.
    Puente XS, Pinyol M, Quesada V, Conde L et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475(7354):101–105PubMedGoogle Scholar
  252. 252.
    Ding L, Ley TJ, Larson DE, Miller CA et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382):506–510PubMedGoogle Scholar
  253. 253.
    Amsellem S, Pflumio F, Bardinet D, Izac B et al (2003) Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat Med 9(11):1423–1427PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Haematology, Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK

Personalised recommendations