Advertisement

Regulation of Intestinal Stem Cells by Wnt and Notch Signalling

  • Katja Horvay
  • Helen E. AbudEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 786)

Abstract

The mammalian intestine is lined by an epithelial cell layer that is constantly renewed via a population of stem cells that reside in a specialised niche within intestinal crypts. The recent development of tools that permit genetic manipulation and lineage tracing of cells in vivo combined with culture methods in vitro has made the intestine particularly amenable for the study of signals that regulate stem cell function. Both Wnt and Notch signalling are critical regulators of stem cell fate. Gene knockout and transgenic expression analysis combined with meticulous analysis of lineage tracing and molecular characterisation has contributed to the definition of the mechanisms by which these pathways act during normal homeostasis and in disease states.

Keywords

β-catenin Crypt Hes1 Lgr5 Olfm4 

References

  1. 1.
    van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260PubMedCrossRefGoogle Scholar
  2. 2.
    Sato T, Stange DE, Ferrante M, Vries RGJ et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–1772PubMedCrossRefGoogle Scholar
  3. 3.
    Sato T, van Es JH, Snippert HJ, Stange DE et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418PubMedCrossRefGoogle Scholar
  4. 4.
    Abud HE, Lock P, Heath JK (2004) Efficient gene transfer into the epithelial cell layer of embryonic mouse intestine using low-voltage electroporation. Gastroenterology 126(7):1779–1787PubMedCrossRefGoogle Scholar
  5. 5.
    Abud HE, Watson N, Heath JK (2005) Growth of intestinal epithelium in organ culture is dependent on EGF signalling. Exp Cell Res 303(2):252–262PubMedCrossRefGoogle Scholar
  6. 6.
    Barker N (2012) Epithelial stem cells in the esophagus: who needs them? Cell Stem Cell 11(3):284–286PubMedCrossRefGoogle Scholar
  7. 7.
    Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205PubMedCrossRefGoogle Scholar
  8. 8.
    Potten CS (1977) Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature 269(5628):518–521PubMedCrossRefGoogle Scholar
  9. 9.
    Potten CS, Kovacs L, Hamilton E (1974) Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet 7(3):271–283PubMedGoogle Scholar
  10. 10.
    Potten CS, Wilson JW, Booth C (1997) Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells 15(2):82–93PubMedCrossRefGoogle Scholar
  11. 11.
    Bjerknes M, Cheng H (2005) Gastrointestinal stem cellsII. Intestinal stem cells. Am J Physiol 289(3):G381–G387Google Scholar
  12. 12.
    Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 141(4):461–479PubMedCrossRefGoogle Scholar
  13. 13.
    Potten CS, Owen G, Booth D (2002) Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115(Pt 11):2381–2388PubMedGoogle Scholar
  14. 14.
    Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat 141(4):537–561PubMedCrossRefGoogle Scholar
  15. 15.
    Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40(7):915–920PubMedCrossRefGoogle Scholar
  16. 16.
    Breault DT, Min IM, Carlone DL, Farilla LG et al (2008) Generation of mTert -GFP mice as a model to identify and study tissue progenitor cells. Proc Natl Acad Sci 105(30):10420–10425PubMedCrossRefGoogle Scholar
  17. 17.
    Takeda N, Jain R, LeBoeuf MR, Wang Q et al (2011) Interconversion between intestinal stem cell populations in distinct niches. Science 334(6061):1420–1424PubMedCrossRefGoogle Scholar
  18. 18.
    Munoz J, Stange DE, Schepers AG, van de Wetering M et al (2012) The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J 31(14):3079–3091PubMedCrossRefGoogle Scholar
  19. 19.
    Barker N, van Oudenaarden A, Clevers H (2012) Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11(4):452–460PubMedCrossRefGoogle Scholar
  20. 20.
    Barker N, van Es JH, Kuipers J, Kujala P et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007PubMedCrossRefGoogle Scholar
  21. 21.
    Sato T, Vries RG, Snippert HJ, van de Wetering M et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265PubMedCrossRefGoogle Scholar
  22. 22.
    Yui S, Nakamura T, Sato T, Nemoto Y et al (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 18(4):618–623PubMedCrossRefGoogle Scholar
  23. 23.
    van der Flier LG, van Gijn ME, Hatzis P, Kujala P et al (2009) Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136(5):903–912PubMedCrossRefGoogle Scholar
  24. 24.
    van der Flier LG, Haegebarth A, Stange DE, van de Wetering M et al (2009) OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137(1):15–17PubMedCrossRefGoogle Scholar
  25. 25.
    Koo BK, Spit M, Jordens I, Low TY et al (2012) Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488(7413):665–669PubMedCrossRefGoogle Scholar
  26. 26.
    Jensen KB, Collins CA, Nascimento E, Tan DW et al (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4(5):427–439PubMedCrossRefGoogle Scholar
  27. 27.
    Wong VW, Stange DE, Page ME, Buczacki S et al (2012) Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol 14(4):401–408PubMedCrossRefGoogle Scholar
  28. 28.
    Powell AE, Wang Y, Li Y, Poulin EJ et al (2012) The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149(1):146–158PubMedCrossRefGoogle Scholar
  29. 29.
    Tian H, Biehs B, Warming S, Leong KG et al (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478(7368):255–259PubMedCrossRefGoogle Scholar
  30. 30.
    Yan KS, Chia LA, Li X, Ootani A et al (2012) The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A 109(2):466–471PubMedCrossRefGoogle Scholar
  31. 31.
    van Es JH, Sato T, van de Wetering M, Lyubimova A et al (2012) Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14(10):1099–1104PubMedCrossRefGoogle Scholar
  32. 32.
    Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A et al (2007) The intestinal Wnt/TCF signature. Gastroenterology 132(2):628–632PubMedCrossRefGoogle Scholar
  33. 33.
    VanDussen KL, Carulli AJ, Keeley TM, Patel SR et al (2011) Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139(3):488–497PubMedCrossRefGoogle Scholar
  34. 34.
    Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170PubMedCrossRefGoogle Scholar
  35. 35.
    Korinek V, Barker N, Morin PJ, van Wichen D et al (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275(5307):1784–1787PubMedCrossRefGoogle Scholar
  36. 36.
    Korinek V, Barker N, Moerer P, van Donselaar E et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19(4):379–383PubMedCrossRefGoogle Scholar
  37. 37.
    Ireland H, Kemp R, Houghton C, Howard L et al (2004) Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology 126(5):1236–1246PubMedCrossRefGoogle Scholar
  38. 38.
    Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17(14):1709–1713PubMedCrossRefGoogle Scholar
  39. 39.
    Kuhnert F, Davis CR, Wang HT, Chu P et al (2004) Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci U S A 101(1):266–271PubMedCrossRefGoogle Scholar
  40. 40.
    Sansom OJ, Reed KR, Hayes AJ, Ireland H et al (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18(12):1385–1390PubMedCrossRefGoogle Scholar
  41. 41.
    van de Wetering M, Sancho E, Verweij C, de Lau W et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111(2):241–250PubMedCrossRefGoogle Scholar
  42. 42.
    Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247(4940):322–324PubMedCrossRefGoogle Scholar
  43. 43.
    Andreu P, Colnot S, Godard C, Gad S et al (2005) Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development 132(6):1443–1451PubMedCrossRefGoogle Scholar
  44. 44.
    Barker N, Ridgway RA, van Es JH, van de Wetering M et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457(7229):608–611PubMedCrossRefGoogle Scholar
  45. 45.
    Gregorieff A, Pinto D, Begthel H, Destree O et al (2005) Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129(2):626–638PubMedGoogle Scholar
  46. 46.
    Farin HF, Van Es JH, Clevers H (2012) Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 143(6):1518–1529.e7PubMedCrossRefGoogle Scholar
  47. 47.
    Hsieh M, Boerboom D, Shimada M, Lo Y et al (2005) Mice null for Frizzled4 (Fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function. Biol Reprod 73(6):1135–1146PubMedCrossRefGoogle Scholar
  48. 48.
    van Es JH, Jay P, Gregorieff A, van Gijn ME et al (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7(4):381–386PubMedCrossRefGoogle Scholar
  49. 49.
    de Lau W, Barker N, Low TY, Koo BK et al (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476(7360):293–297PubMedCrossRefGoogle Scholar
  50. 50.
    Durand A, Donahue B, Peignon G, Letourneur F et al (2012) Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci USA 109(23):8965–8970PubMedCrossRefGoogle Scholar
  51. 51.
    Kim TH, Escudero S, Shivdasani RA (2012) Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci U S A 109(10):3932–3937PubMedCrossRefGoogle Scholar
  52. 52.
    Ruffner H, Sprunger J, Charlat O, Leighton-Davies J et al (2012) R-Spondin potentiates Wnt/beta-catenin signaling through orphan receptors LGR4 and LGR5. PLoS One 7(7):e40976PubMedCrossRefGoogle Scholar
  53. 53.
    Carmon KS, Gong X, Lin Q, Thomas A et al (2011) R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 108(28):11452–11457PubMedCrossRefGoogle Scholar
  54. 54.
    Sansom OJ, Meniel VS, Muncan V, Phesse TJ et al (2007) Myc deletion rescues Apc deficiency in the small intestine. Nature 446(7136):676–679PubMedCrossRefGoogle Scholar
  55. 55.
    Clarke AR (2006) Wnt signalling in the mouse intestine. Oncogene 25(57):7512–7521PubMedCrossRefGoogle Scholar
  56. 56.
    Horvay K, Casagranda F, Gany A, Hime GR et al (2011) Wnt signaling regulates Snai1 expression and cellular localization in the mouse intestinal epithelial stem cell niche. Stem Cells Dev 20(4):737–745PubMedCrossRefGoogle Scholar
  57. 57.
    Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233PubMedCrossRefGoogle Scholar
  58. 58.
    Sander GR, Powell BC (2004) Expression of notch receptors and ligands in the adult gut. J Histochem Cytochem 52(4):509–516PubMedCrossRefGoogle Scholar
  59. 59.
    Schroder N, Gossler A (2002) Expression of Notch pathway components in fetal and adult mouse small intestine. Gene Expr Patterns 2(3–4):247–250PubMedCrossRefGoogle Scholar
  60. 60.
    Fre S, Hannezo E, Sale S, Huyghe M et al (2011) Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PLoS One 6(10):e25785PubMedCrossRefGoogle Scholar
  61. 61.
    Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L et al (2008) Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9(4):377–383PubMedCrossRefGoogle Scholar
  62. 62.
    Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ et al (2010) Therapeutic antibody targeting of individual Notch receptors. Nature 464(7291):1052–1057PubMedCrossRefGoogle Scholar
  63. 63.
    Pellegrinet L, Rodilla V, Liu Z, Chen S et al (2011) Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140(4):1230–1240, e1231–1237PubMedCrossRefGoogle Scholar
  64. 64.
    Benedito R, Duarte A (2005) Expression of Dll4 during mouse embryogenesis suggests multiple developmental roles. Gene Expr Patterns 5(6):750–755PubMedCrossRefGoogle Scholar
  65. 65.
    Ueo T, Imayoshi I, Kobayashi T, Ohtsuka T et al (2012) The role of Hes genes in intestinal development, homeostasis and tumor formation. Development 139(6):1071–1082PubMedCrossRefGoogle Scholar
  66. 66.
    van Es JH, van Gijn ME, Riccio O, van den Born M et al (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435(7044):959–963PubMedCrossRefGoogle Scholar
  67. 67.
    Milano J, McKay J, Dagenais C, Foster-Brown L et al (2004) Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 82(1):341–358PubMedCrossRefGoogle Scholar
  68. 68.
    Fre S, Huyghe M, Mourikis P, Robine S et al (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435(7044):964–968PubMedCrossRefGoogle Scholar
  69. 69.
    Fre S, Pallavi SK, Huyghe M, Lae M et al (2009) Notch and Wnt signals cooperatively control cell ­proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci U S A 106(15):6309–6314PubMedCrossRefGoogle Scholar
  70. 70.
    Peignon G, Durand A, Cacheux W, Ayrault O et al (2011) Complex interplay between beta-catenin signalling and Notch effectors in intestinal tumorigenesis. Gut 60(2):166–176PubMedCrossRefGoogle Scholar
  71. 71.
    Rodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A et al (2009) Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci USA 106(15):6315–6320PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Anatomy and Developmental BiologyMonash UniversityClaytonAustralia

Personalised recommendations