The Stem Cell State

  • Gary R. HimeEmail author
  • Helen E. Abud
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 786)


This volume describes the latest findings on transcriptional and translational regulation of stem cells. Both transcriptional activators and repressors have been shown to be crucial for the maintenance of the stem cell state. A key element of stem cell maintenance is repression of differentiation factors or developmental genes – achieved transcriptionally, epigenetically by the Polycomb complex, and post-transcriptionally by RNA-binding proteins and microRNAs. This volume takes two approaches to this topic – (1) illustrating the general principles outlined above through a series of different stem cell examples – embryonic, iPS and adult stem cells, and (2) describing several molecular families that have been shown to have roles in regulation of multiple stem cell populations.


Clonogenicity History Niche Pluripotency Repression 


  1. 1.
    Driesch H (1892) The potency of the first two cleavage cells in echinoderm development. Experimental production of partial and double formation (reprinted translation). In: Oppenheimer JM (ed) Foundations of experimental embryology, part 2. Hafner, New York, pp 39–50Google Scholar
  2. 2.
    Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA 38(5):455–463PubMedCrossRefGoogle Scholar
  3. 3.
    Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640PubMedGoogle Scholar
  4. 4.
    Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182(4627):64–65PubMedCrossRefGoogle Scholar
  5. 5.
    Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 72(9):3585–3589PubMedCrossRefGoogle Scholar
  6. 6.
    Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66PubMedCrossRefGoogle Scholar
  7. 7.
    Spemann H (1938) Embryonic development and induction. Yale University Press, New HavenGoogle Scholar
  8. 8.
    Takahashi K, Tanabe K, Ohnuki M, Narita M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  9. 9.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  10. 10.
    Maximow A (1909) The lymphocyte as a stem cell common to different blood elements in embryonic development and during the post-fetal life of mammals. Originally in German. Folia Haematol 8:125–134 [English translation (2009) Cell Ther Transplant 1(3):14–18]Google Scholar
  11. 11.
    Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454PubMedCrossRefGoogle Scholar
  12. 12.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMedCrossRefGoogle Scholar
  13. 13.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78(12):7634–7638PubMedCrossRefGoogle Scholar
  14. 14.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMedCrossRefGoogle Scholar
  15. 15.
    Moore MA, Metcalf D (1970) Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 18(3):279–296PubMedCrossRefGoogle Scholar
  16. 16.
    Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 91(24):11298–11302PubMedCrossRefGoogle Scholar
  17. 17.
    Simon L, Ekman GC, Kostereva N, Zhang Z et al (2009) Direct transdifferentiation of stem/progenitor spermatogonia into reproductive and nonreproductive tissues of all germ layers. Stem Cells 27(7):1666–1675PubMedCrossRefGoogle Scholar
  18. 18.
    Snippert HJ, van der Flier LG, Sato T, van Es JH et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144PubMedCrossRefGoogle Scholar
  19. 19.
    Chia W, Somers WG, Wang H (2008) Drosophila neuroblast asymmetric divisions: cell cycle regulators, asymmetric protein localization, and tumorigenesis. J Cell Biol 180(2):267–272PubMedCrossRefGoogle Scholar
  20. 20.
    Ryu BY, Orwig KE, Oatley JM, Avarbock MR et al (2006) Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 24(6):1505–1511PubMedCrossRefGoogle Scholar
  21. 21.
    Spradling A, Fuller MT, Braun RE, Yoshida S (2011) Germline stem cells. Cold Spring Harb Perspect Biol 3(11):a002642PubMedCrossRefGoogle Scholar
  22. 22.
    Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337PubMedCrossRefGoogle Scholar
  23. 23.
    Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78(4):219–243PubMedCrossRefGoogle Scholar
  24. 24.
    Barker N, van Es JH, Kuipers J, Kujala P et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007PubMedCrossRefGoogle Scholar
  25. 25.
    Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327(5965):542–545PubMedCrossRefGoogle Scholar
  26. 26.
    Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25PubMedGoogle Scholar
  27. 27.
    Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the drosophila ovary. Science 290(5490):328–330PubMedCrossRefGoogle Scholar
  28. 28.
    Hsu YC, Fuchs E (2012) A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Biol 13(2):103–114PubMedCrossRefGoogle Scholar
  29. 29.
    Leatherman JL, Dinardo S (2008) Zfh-1 controls somatic stem cell self-renewal in the drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 3(1):44–54PubMedCrossRefGoogle Scholar
  30. 30.
    Leatherman JL, Dinardo S (2010) Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in drosophila testes. Nat Cell Biol 12(8):806–811PubMedCrossRefGoogle Scholar
  31. 31.
    Boyer LA, Plath K, Zeitlinger J, Brambrink T et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091):349–353PubMedCrossRefGoogle Scholar
  32. 32.
    Lee TI, Jenner RG, Boyer LA, Guenther MG et al (2006) Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125(2):301–313PubMedCrossRefGoogle Scholar
  33. 33.
    Jepsen K, Solum D, Zhou T, McEvilly RJ et al (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450(7168):415–419PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Anatomy and NeuroscienceUniversity of MelbourneParkville, MelbourneAustralia
  2. 2.Department of Anatomy and Developmental BiologyMonash UniversityClaytonAustralia

Personalised recommendations