Advertisement

On the Electron-Phonon Interactions in Graphene

  • Bekir Kandemir
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Chiral polaron formation arising from the electron-E2g phonon coupling and the mini band gap formation due to electron-A1g phonon coupling are investigated in pristine graphene. We present an analytical method to calculate the ground-state of the electron-phonon system within the framework of the Lee-Low-Pines theory. We show that the degenerate band structure of the graphene promotes the chiral polaron formation. Within our theoretical analysis, we also show that the interaction of charge carriers with the highest frequency zone-boundary phonon mode with A1g -symmetry induces a mini band gap at the corners of the two-dimensional Brillouin zone of the graphene.

Keywords

Optical Phonon Unitary Transformation Phonon Mode Pristine Graphene Optical Phonon Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ajiki H, Ando T (1995) Lattice distortion of metallic carbon nanotubes induced by magnetic fields. J Phys Soc Jpn 64:260–267ADSCrossRefGoogle Scholar
  2. 2.
    Ajiki H, Ando T (1996) Lattice distortion with spatial variation of carbon nanotubes in magnetic fields. J Phys Soc Jpn 65:2976–2986ADSCrossRefGoogle Scholar
  3. 3.
    Araki Y (2011) Chiral symmetry restoration in monolayer graphene induced by Kekule distortion. Phys Rev B 84:113402ADSCrossRefGoogle Scholar
  4. 4.
    Araujo PT, Mafra DL, Sato K, Saito R, Kong J, Dresselhaus MS (2012) Phonon self-energy corrections to nonzero wave-vector phonon modes in single-layer graphene. Phys Rev Lett 109:046801ADSCrossRefGoogle Scholar
  5. 5.
    Badalyan SM, Peeters FM (2012) Electron-phonon bound state in graphene. Phys Rev B 85:205453ADSCrossRefGoogle Scholar
  6. 6.
    Basko DM (2007) Effect of inelastic collisions on multiphonon Raman scattering in graphene. Phys Rev B 76:081405(R)Google Scholar
  7. 7.
    Basko DM (2008) Theory of resonant multiphonon Raman scattering in graphene. Phys Rev B 78:125418ADSCrossRefGoogle Scholar
  8. 8.
    Basko DM, Aleiner IL (2008) Interplay of Coulomb and electron-phonon interactions in graphene. Phys Rev B 77:041409(R)Google Scholar
  9. 9.
    Calandra M, Mauri F (2007) Electron-phonon coupling and electron self-energy in electron-doped graphene: calculation of angular-resolved photoemission spectra. Phys Rev B 76:205411ADSCrossRefGoogle Scholar
  10. 10.
    Carbotte JP, Nicol EJ, Sharapov SG (2010) Effect of electron-phonon interaction on spectroscopies in graphene. Phys Rev B 81:045419ADSCrossRefGoogle Scholar
  11. 11.
    Dubay O, Kresse G (2003) Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes. Phys Rev B 67:0354012003CrossRefGoogle Scholar
  12. 12.
    Farjam M, Rafii-Tabar H (2010) Uniaxial strain on gapped graphene. Physica E 42:2109–2114ADSCrossRefGoogle Scholar
  13. 13.
    Faugeras C, Amado M, Kossacki P, Orlita M, Sprinkle M, Berger C, de Heer WA, Potemski M (2009) Tuning the electron-phonon coupling in multilayer graphene with magnetic fields. Phys Rev Lett 103:186803ADSCrossRefGoogle Scholar
  14. 14.
    Giuliani A, Mastropietro V, Porta M (2010) Lattice gauge theory model for graphene. Phys Rev B 82:121418(R)Google Scholar
  15. 15.
    Goerbig MO, Fuchs J-N, Kechedzhi K, Fal’ko VI (2007) Filling-factor-dependent magnetophonon resonance in graphene. Phys Rev Lett 99:087402ADSCrossRefGoogle Scholar
  16. 16.
    Griffiths D (1987) Introduction to elementary particles. Wiley, Singapore, p 249CrossRefGoogle Scholar
  17. 17.
    Harigaya K (1992) From C60 to a fullerene tube: Systematic analysis of lattice and electronic structures by the extended Su-Schrieffer-Heeger model. Phys Rev B 45:12071ADSCrossRefGoogle Scholar
  18. 18.
    Harigaya K, Fujita M (1993) Dimerization structures of metallic and semiconducting fullerene tubules. Phys Rev B 47:16563ADSCrossRefGoogle Scholar
  19. 19.
    Hwang EH, Sensarma R, Das Sarma S (2010) Plasmon-phonon coupling in graphene. Phys Rev B 82:195406ADSCrossRefGoogle Scholar
  20. 20.
    Ishikawa K, Ando T (2006) Optical phonon interacting with electrons in carbon nanotubes. J Phys Soc Jpn 75:084713ADSCrossRefGoogle Scholar
  21. 21.
    Jishi RA, Dresselhaus MS, Dresselhaus G (1993) Electron-phonon coupling and the electrical conductivity of fullerene nanotubules. Phys Rev B 48:11385ADSCrossRefGoogle Scholar
  22. 22.
    Kandemir BS (2013) Possible formation of chiral polarons in graphene. J Phys Condens Matter 25:025302ADSCrossRefGoogle Scholar
  23. 23.
    Kandemir BS, Mogulkoc A (2012) Zone-boundary phonon induced mini band gap formation in graphene. arXiv:1211.3528Google Scholar
  24. 24.
    Krstajić PM, Peeters FM (2012) Energy-momentum dispersion relation of plasmarons in graphene. Phys Rev B 85:205454ADSCrossRefGoogle Scholar
  25. 25.
    Lazzeri M, Piscanec S, Mauri F, Ferrari AC, Robertson J (2005) Electron transport and hot phonons in carbon nanotubes. Phys Rev Lett 95:236802ADSCrossRefGoogle Scholar
  26. 26.
    Lazzeri M, Piscanec S, Mauri F, Ferrari AC, Robertson J (2006) Phonon linewidths and electron-phonon coupling in graphite and nanotubes. Phys Rev B 73:155426ADSCrossRefGoogle Scholar
  27. 27.
    Lazzeri M, Attaccalite C, Wirtz L, Mauri F (2008) Impact of the electron-electron correlation on phonon dispersion: failure of LDA and GGA DFT functionals in graphene and graphite. Phys Rev B 78:081406(R)Google Scholar
  28. 28.
    Lee S-H, Chung H-J, Heo J, Yang H, Shin J, Chung U-I, Seo S (2011) Band gap opening by two-dimensional manifestation of Peierls instability in graphene. ACS Nano 5:2964–2969CrossRefGoogle Scholar
  29. 29.
    Lee TD, Low FE, Pines D (1953) The motion of slow electrons in a polar crystal. Phys Rev 90:297–302MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Li WP, Wang ZW, Yin JW, Yu YF (2012) The effects of the magnetopolaron on the energy gap opening in graphene. J Phys Condens Matter 24:135301ADSCrossRefGoogle Scholar
  31. 31.
    Mariani E, von Oppen F (2008) Flexural phonons in free-standing graphene. Phys Rev Lett 100:076801ADSCrossRefGoogle Scholar
  32. 32.
    Mariani E, von Oppen F (2010) Temperature-dependent resistivity of suspended graphene. Phys Rev B 82:195403ADSCrossRefGoogle Scholar
  33. 33.
    Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX (2008) Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2:2301–2305CrossRefGoogle Scholar
  34. 34.
    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Nat Acad Sci USA 102:10451ADSCrossRefGoogle Scholar
  35. 35.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666ADSCrossRefGoogle Scholar
  36. 36.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200ADSCrossRefGoogle Scholar
  37. 37.
    Park CH, Giustino F, Cohen ML, Louie SG (2007) velocity renormalization and carrier lifetime in graphene from the electron–phonon interaction. Phys Rev Lett 99:086804Google Scholar
  38. 38.
    Pietronero L, Strässler S, Zeller HR, Rice MJ (1980) Electrical conductivity of a graphite layer. Phys Rev B 22:904ADSCrossRefGoogle Scholar
  39. 39.
    Pisana S, Lazzeri M, Casiraghi C, Novoselov KS, Geim AK, Ferrari AC, Mauri F (2007) Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat Mater 3:198ADSCrossRefGoogle Scholar
  40. 40.
    Piscanec S, Lazzeri M, Mauri F, Ferrari AC, Robertson J (2004) Kohn anomalies and electron-phonon interactions in graphite. Phys Rev Lett 93:185503ADSCrossRefGoogle Scholar
  41. 41.
    Rana F, George PA, Strait JH, Dawlaty J, Shivaraman S, Chandrashekhar M, Spencer MG (2009) Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene. Phys Rev B 79:115447ADSCrossRefGoogle Scholar
  42. 42.
    Samsonidze GG, Barros EB, Saito R, Jiang J, Dresselhaus G, Dresselhaus MS (2007) Electron-phonon coupling mechanism in two-dimensional graphite and single-wall carbon nanotubes. Phys Rev B 75:155420ADSCrossRefGoogle Scholar
  43. 43.
    Semenoff GW (1984) Condensed-matter simulation of a three-dimensional anomaly. Phys Rev Lett 53:2449MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Stauber T, Peres NMR (2008) Effect of Holstein phonons on the electronic properties of graphene. J Phys Condens Matter 20:055002ADSCrossRefGoogle Scholar
  45. 45.
    Stauber T, Peres NMR, Castro Neto AH (2008) Conductivity of suspended and non-suspended graphene at finite gate voltage. Phys Rev B 78:085418ADSCrossRefGoogle Scholar
  46. 46.
    Stojanović VM, Vukmirovic N, Bruder C (2010) Polaronic signatures and spectral properties of graphene antidot lattices. Phys Rev B 82:165410ADSCrossRefGoogle Scholar
  47. 47.
    Suzuura H, Ando T (2008) Zone-boundary phonon in graphene and nanotube. J Phys Soc Jpn 77:044703ADSCrossRefGoogle Scholar
  48. 48.
    Viet NA, Ajiki H, Ando T (1994) Lattice instability in metallic carbon nanotubes. J Phys Soc Jpn 63:3036–3047ADSCrossRefGoogle Scholar
  49. 49.
    Wallace PR (1947) The band theory of graphite. Phys Rev 71:622ADSzbMATHCrossRefGoogle Scholar
  50. 50.
    Yan J, Zhang Y, Kim P, Pinczuk A (2007) Electric field effect tuning of electron-phonon coupling in graphene. Phys Rev Lett 98:166802ADSCrossRefGoogle Scholar
  51. 51.
    Zhou SY, Gweon GH, Federov AV, First PN, De Heer WA, Lee D-H, Guinea F, Castro Neto AH, Lanzara A (2007) Substrate-induced bandgap opening in epitaxial graphene. Nature 6:770CrossRefGoogle Scholar
  52. 52.
    Zhou SY, Siegel DA, Fedorov AV, Lanzara A (2008) Kohn anomaly and interplay of electron-electron and electron-phonon interactions in epitaxial graphene. Phys Rev B 78:193404ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of Sciences, Department of PhysicsAnkara UniversityAnkaraTurkey

Personalised recommendations