Anyon Bosonized 2D Fermions or a Single Boson Physics of Cuprates: Experimental Evidences

  • Bakhodir Abdullaev
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Within the single boson and single fermion two liquid picture [1] we have been succeeded to understand all elements of the doping-temperature phase diagram [1–3] and the non-Fermi liquid low-temperature heat conductivity and entropy [4] of cuprates. Single bosons are a result of the anyon bosonization of 2D fermions.


Monte Carlo Statistical Magnetic Field Fractional Charge Scanning Tunneling Microscopy Measurement Bogoliubov Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdullaev B, Park C-H, Musakhanov MM (2011) Phys C 471:486ADSCrossRefGoogle Scholar
  2. 2.
    Abdullaev B (2006) Implicit anyon or single particle boson mechanism of HTCS and pseudogap regime. In: Ling AV (ed) Trends in boson research. Nova Science Publisher, Inc., New York, pp 139–161Google Scholar
  3. 3.
    Abdullaev B, Park C-H (2006) J Korean Phys Soc 49:S642Google Scholar
  4. 4.
    Abdullaev B, Park C-H, Park K-S cond-mat/0703290Google Scholar
  5. 5.
    Timusk N, Statt B (1999) Rep Prog Phys 62:61ADSCrossRefGoogle Scholar
  6. 6.
    Howald C, Fournier P, Kapitulnik A (2001) Phys Rev B 64:100504(R)Google Scholar
  7. 7.
    McElroy K et al (2005) Science 309:1048ADSCrossRefGoogle Scholar
  8. 8.
    Pan SH et al (2001) Nature 413:282ADSCrossRefGoogle Scholar
  9. 9.
    Gomes KK et al (2007) Nature 447:569ADSCrossRefGoogle Scholar
  10. 10.
    Koizumi H (2010) J Phys A 43:354009MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hill RW, Proust C, Taillefer L, Fournier P, Greene RL (2001) Nature 414:711ADSCrossRefGoogle Scholar
  12. 12.
    Proust C, Behnia K, Bel R, Mande D, Vedeneev SI (2005) Phys Rev B 72:214511ADSCrossRefGoogle Scholar
  13. 13.
    Loram JW, Mirza KA, Cooper JR, Liang WY (1993) Phys Rev Lett 71:1740ADSCrossRefGoogle Scholar
  14. 14.
    Loram JW, Luo J, Cooper J, Liang W, Tallon J (2001) J Phys Chem Solids 62:59ADSCrossRefGoogle Scholar
  15. 15.
    Luo JL, Loram JW, Xiang T, Cooper JR, Tallon JL cond-mat/0112065Google Scholar
  16. 16.
    Leinaas JM, Myrheim J (1977) Nuovo Cimento Soc Ital Fis B 37:1ADSCrossRefGoogle Scholar
  17. 17.
    Wilczek F (1982) Phys Rev Lett 48:1144MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Wilczek F (1990) Fractional statistics and anyon superconductivity. World Scientific, SingaporeGoogle Scholar
  19. 19.
    Lerda A (1992) Anyons. Springer, BerlinzbMATHGoogle Scholar
  20. 20.
    Dunne G, Lerda A, Sciuto S, Trugenberger CA (1992) Nucl Phys B 370:601MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Laughlin RB (1987) In: Prange RE, Girvin SM (eds) The quantum Hall effect. Springer, New YorkGoogle Scholar
  22. 22.
    Wu Y-S (1984) Phys Rev Lett 53:111 (Erratum ibid 53:1028 (1984); Laughlin RB (1988) Phys Rev Lett 60:2677Google Scholar
  23. 23.
    Comtet A, McCabe J, Ouvry S (1991) Phys Lett B 260:372MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Abdullaev B, Roessler U, Musakhanov M (2007) Phys Rev B 76:075403ADSCrossRefGoogle Scholar
  25. 25.
    Bonsal L, Maradudin AA (1977) Phys Rev B 15:1959ADSCrossRefGoogle Scholar
  26. 26.
    Rajagopal AK, Kimball JC (1977) Phys Rev B 15:2819ADSCrossRefGoogle Scholar
  27. 27.
    Tanatar B, Ceperley DM (1989) Phys Rev B 39:5005ADSCrossRefGoogle Scholar
  28. 28.
    De Palo S, Conti S, Moroni S (2004) Phys Rev B 69:035109ADSCrossRefGoogle Scholar
  29. 29.
    Attaccalite C, Moroni S, Gori-Giorgi P, Bachelet GB (2002) Phys Rev Lett 88:256601; (2003) Phys Rev Lett 91:109902(E)Google Scholar
  30. 30.
    Landau LD, Lifshitz EM (1977) Quantum mechanics, non-relativistic theory. Pergamon Press, Oxford, \(\S \) 65Google Scholar
  31. 31.
    Tallon JL, Loram JW (2001) Phys C 349:53ADSCrossRefGoogle Scholar
  32. 32.
    Onose Y, Taguchi Y, Ishizaka K, Tokura Y (2004) Phys Rev B 69:024504ADSCrossRefGoogle Scholar
  33. 33.
    Zimmers A et al (2005) Europhys Lett 70:225ADSCrossRefGoogle Scholar
  34. 34.
    Zaanen J (2004) Nature 430:512ADSCrossRefGoogle Scholar
  35. 35.
    Uemura YJ et al (1989) Phys Rev Lett 62:2317ADSCrossRefGoogle Scholar
  36. 36.
    Uemura YJ et al (1991) Phys Rev Lett 66:2665ADSCrossRefGoogle Scholar
  37. 37.
    Kastner MA, Birgeneau RJ, Shirane G, Endoh Y (1998) Rev Mod Phys 70:897ADSCrossRefGoogle Scholar
  38. 38.
    Wang Y, Li L, Ong NP (2006) Phys Rev B 73:024510ADSCrossRefGoogle Scholar
  39. 39.
    Gavrilkin SY, Ivanenko OM, Martovitskii VP, Mitsen KV, Tsvetkov AY (2009) Proceedings of M2S-IX 2009, Tokyo, Arxiv: 0909.0612Google Scholar
  40. 40.
    Oh S, Crane TA, Van Harlingen DJ, Eckstein JN (2006) Phys Rev Lett 96:107003ADSCrossRefGoogle Scholar
  41. 41.
    Stern A (2008) Anyons and the quantum Hall effect – a pedagogical review. Ann Phys 323:204ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Applied PhysicsNational University of UzbekistanTashkentUzbekistan

Personalised recommendations