Advertisement

Are Scattering Properties of Networks Uniquely Connected to Their Shapes?

  • Oleh Hul
  • Michał Ławniczak
  • Szymon Bauch
  • Adam Sawicki
  • Marek Kuś
  • Leszek Sirko
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Are scattering properties of networks uniquely connected to their shapes? This is a modification of the famous question of Mark Kac “Can one hear the shape of a drum: revisited. which can be asked in the case of scattering systems such as quantum graphs and microwave networks. We present the experimental approach to this problem (Hul et al., Phys Rev Lett 109:040402, 2012). Our experimental results indicate a negative answer to the above question. To demonstrate this we constructed a pair of isospectral microwave networks consisting of vertices connected by microwave coaxial cables and extended them to scattering systems by connecting leads to infinity to form isoscattering networks. We show that the amplitudes and phases of the determinants of the scattering matrices of such networks are the same within the experimental uncertainties. Additionally, we demonstrate that the scattering matrices of the networks are conjugated by the transplantation relation. The experimental results are in perfect agreement with the theoretical predictions.

Keywords

Helmholtz Equation Coaxial Cable Vector Network Analyzer Quantum Graph Microwave Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hul O, Ławniczak M, Bauch S, Sawicki A, Kuś M, Sirko L (2012) Are scattering properties of graphs uniquely connected to their shapes? Phys Rev Lett 109:040402ADSCrossRefGoogle Scholar
  2. 2.
    Kac M (1966) Can one hear the shape of the drum? Am Math Mon 73:1zbMATHCrossRefGoogle Scholar
  3. 3.
    Gordon C, Webb D, Wolpert S (1992) Isospectral plane domains and surfaces via Riemannian orbifolds. Invent Math 110:1MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Gordon C, Webb D, Wolpert S (1992) One cannot hear the shape of a drum. Bull Am Math Soc 27:134MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Sunada T (1985) Riemannian coverings and isospectral manifolds. Ann Math 121:169MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Sridhar S, Kudrolli A (1994) Experiments on not hearing the shape of drums. Phys Rev Lett 72:2175ADSCrossRefGoogle Scholar
  7. 7.
    Dhar A, Rao DM, Shankar U, Sridhar S (2003) Isospectrality in chaotic billiards. Phys Rev E 68:026208MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Okada Y, Shudo A, Tasaki S, Harayama T (2005) Can one hear the shape of a drum? J Phys A 38:L163MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Gutkin B, Smilansky U (2001) Can one hear the shape of a graph? J Phys A 34:6061MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Band R, Parzanchevski O, Ben-Shach G (2009) The isospectral fruits of representation theory: quantum graphs and drums. J Phys A 42:175202MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Parzanchevski O, Band R (2010) Linear representations and isospectrality with boundary conditions. J Geom Anal 20:439MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Band R, Sawicki A, Smilansky U (2010) Scattering from isospectral quantum graphs. J Phys A 43:415201MathSciNetCrossRefGoogle Scholar
  13. 13.
    Band R, Sawicki A, Smilansky U (2011) Note on the role of symmetry in scattering from isospectral graphs and drums. Acta Phys Pol. A 120:A149Google Scholar
  14. 14.
    Gnutzmann S, Smilansky U (2006) Quantum graphs: applications to quantum chaos and universal spectral statistics. Adv Phys 55:527ADSCrossRefGoogle Scholar
  15. 15.
    Dick KA, Deppert K, Larsson MW, Märtensson T, Seifert W, Wallenberg LR, Samuelson L (2004) Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat Mater 3:380ADSCrossRefGoogle Scholar
  16. 16.
    Heo K et al (2008) Large-Scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. Nano Lett 8:4523ADSCrossRefGoogle Scholar
  17. 17.
    Hul O, Bauch S, Pakonski P, Savytskyy N, Życzkowski K, Sirko L (2004) Experimental simulation of quantum graphs by microwave networks. Phys Rev E 69:056205ADSCrossRefGoogle Scholar
  18. 18.
    Jones DS (1964) Theory of electromagnetism. Pergamon Press, OxfordzbMATHGoogle Scholar
  19. 19.
    Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon Press, OxfordzbMATHGoogle Scholar
  20. 20.
    Goubau G (1961) Electromagnetic waveguides and cavities. Pergamon Press, OxfordGoogle Scholar
  21. 21.
    Kottos T, Smilansky U (1999) Periodic orbit theory and spectral statistics for quantum graphs. Ann Phy 274:76MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Hul O, Tymoshchuk O, Bauch S, Koch PM, Sirko L (2005) Experimental investigation of Wigner’s reaction matrix for irregular graphs with absorption. J Phys A 38:10489MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Ławniczak M, Hul O, Bauch S, Šeba P, Sirko L (2008) Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner’s reaction matrix for irregular graphs with absorption. Phys Rev E 77:056210ADSCrossRefGoogle Scholar
  24. 24.
    Ławniczak M, Bauch S, Hul O, Sirko L (2009) Experimental investigation of properties of hexagon networks with and without time reversal symmetry. Phys Scr T135:014050ADSCrossRefGoogle Scholar
  25. 25.
    Ławniczak M, Hul O, Bauch S, Sirko L (2009) Experimental and numerical studies of one-dimensional and three-dimensional chaotic open systems. Acta Phys Pol A 116:749ADSGoogle Scholar
  26. 26.
    Ławniczak M, Bauch S, Hul O, Sirko L (2010) Experimental investigation of the enhancement factor for microwave irregular networks with preserved and broken time reversal symmetry in the presence of absorption. Phys Rev E 81:046204ADSCrossRefGoogle Scholar
  27. 27.
    Blümel R, Buchleitner A, Graham R, Sirko L, Smilansky U, Walther H (1991) Dynamic localization in the microwave interaction of rydberg atoms and the influence of noise. Phys Rev A 44:4521ADSCrossRefGoogle Scholar
  28. 28.
    Bellermannn M, Bergemann T, Haffmanns A, Koch PM, Sirko L (1992) Electric-field dependence of E1 transitions between highly excited hydrogen Stark sublevels. Phys Rev A 46:5836ADSCrossRefGoogle Scholar
  29. 29.
    Sirko L, Yoakum S, Haffmans A, Koch PM (1993) Microwave-driven He Rydberg atoms: Floquet-state degeneracy lifted by a second frequency, Stueckelberg oscillations, and their destruction by added noise. Phys Rev A 47:R782ADSCrossRefGoogle Scholar
  30. 30.
    Sirko L, Koch PM (1995) The pendulum approximation for the main quantal resonance in periodically driven Hydrogen atoms. Appl Phys B 60:S195Google Scholar
  31. 31.
    Sirko L, Haffmans A, Bellermann MRW, Koch PM (1996) Microwave “ionization” of excited hydrogen atoms: frequency dependence in a resonance zone. Europhysics Letters 33:181ADSCrossRefGoogle Scholar
  32. 32.
    Sirko L, Zelazny SA, Koch PM (2001) Use of the relative phase in a bichromatic field pulse to control a quasienergy gap. Phys Rev Lett 87:043002ADSCrossRefGoogle Scholar
  33. 33.
    Sirko L, Koch PM (2002) Control of common resonances in bichromatically driven hydrogen atoms. Phys Rev Lett 89:274101ADSCrossRefGoogle Scholar
  34. 34.
    Stöckmann HJ, Stein J (1990) “Quantum” chaos in billiards studied by microwave absorption. Phys Rev Lett 64:2215ADSCrossRefGoogle Scholar
  35. 35.
    Sridhar S (1991) Experimental observation of scarred eigenfunctions of chaotic microwave cavities. Phys Rev Lett 67:785ADSCrossRefGoogle Scholar
  36. 36.
    Alt H, Gräf H-D, Harner HL, Hofferbert R, Lengeler H, Richter A, Schardt P, Weidenmüller A (1995) Gaussian orthogonal ensemble statistics in a microwave stadium billiard with chaotic dynamics: Porter-Thomas distribution and algebraic decay of time correlations. Phys Rev Lett 74:62ADSCrossRefGoogle Scholar
  37. 37.
    So P, Anlage SM, Ott E, Oerter RN (1995) Wave chaos experiments with and without time reversal symmetry: GUE and GOE statistics. Phys Rev Lett 74:2662ADSCrossRefGoogle Scholar
  38. 38.
    Stoffregen U, Stein J, Stöckmann H-J, Kuś M, Haake F (1995) Microwave billiards with broken time reversal symmetry. Phys Rev Lett 74:2666ADSCrossRefGoogle Scholar
  39. 39.
    Haake F, Kuś M, Šeba P, Stöckmann H-J, Stoffregen U (1996) Microwave billiards with broken time reversal invariance. J Phys A 29:5745ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Sirko L, Koch PM, Blümel R (1997) Experimental identification of non-Newtownian orbits produced by ray splitting in a dielectric-loaded microwave cavity. Phys Rev Lett 78:2940ADSCrossRefGoogle Scholar
  41. 41.
    Bauch S, Błȩdowski A, Sirko L, Koch PM, Blümel R (1998) Signature of non-Newtownian orbits in ray splitting cavities. Phys Rev E 57:304ADSCrossRefGoogle Scholar
  42. 42.
    Sirko L, Bauch S, Hlushchuk Y, Koch PM, Blümel R, Barth M, Kuhl U, Stöckmann H-J (2000) Observation of dynamical localization in a rough microwave cavity. Phys Lett A 266:331–335ADSCrossRefGoogle Scholar
  43. 43.
    Blümel R, Koch PM, Sirko L (2001) Ray-splitting billiards. Found Phys 31:269MathSciNetCrossRefGoogle Scholar
  44. 44.
    Hlushchuk Y, Sirko L, Kuhl U, Barth M, Stöckmann H-J (2001) Experimental investigation of a regime of Wigner ergodicity in microwave rough billiards. Phys Rev E 63:046208ADSCrossRefGoogle Scholar
  45. 45.
    Savytskyy N, Bauch S, Błȩdowski A, Hul O, Sirko L (2002) Properties of eigenfunctions in the quantum cantori regime. Acta Phys Pol B 33:2123ADSGoogle Scholar
  46. 46.
    Savytskyy N, Hul O, Sirko L (2004) Experimental investigation of nodal domains in the chaotic microwave rough billiard. Phys Rev E 70:056209ADSCrossRefGoogle Scholar
  47. 47.
    Hul O, Savytskyy N, Tymoshchuk O, Bauch S, Sirko L (2005) Investigation of nodal domains in the chaotic microwave ray-splitting rough billiard. Phys Rev E 72:066212ADSCrossRefGoogle Scholar
  48. 48.
    Deus S, Koch PM, Sirko L (1995) Statistical properties of eigenfrequency distribution of three-dimensional microwave cavities. Phys Rev E 52:1146ADSCrossRefGoogle Scholar
  49. 49.
    Dörr U, Stöckmann H-J, Barth M, Kuhl U (1998) Scarred and chaotic field distributions in a three-dmensional Sinai-microwave resonator. Phys Rev Lett 80:1030ADSCrossRefGoogle Scholar
  50. 50.
    Dembowski C, Dietz B, Gräf H-D, Heine A, Papenbrock T, Richter A, Richter C (2002) Experimental test of a trace formula for a chaotic three-dimensional microwave cavity. Phys Rev Lett 89:064101-1ADSCrossRefGoogle Scholar
  51. 51.
    Tymoshchuk O, Savytskyy N, Hul O, Bauch S, Sirko L (2007) Experimental investigation of electric field distributions in a chaotic three-dimensional microwave rough billiard. Phys Rev E 75:037202ADSCrossRefGoogle Scholar
  52. 52.
    Hul O, Sirko L (2011) Parameter-dependent spectral statistics of chaotic quantum graphs: Neumann versus circular orthogonal ensemble boundary conditions. Phys Rev E 83:066204ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Oleh Hul
    • 1
  • Michał Ławniczak
    • 1
  • Szymon Bauch
    • 1
  • Adam Sawicki
    • 2
  • Marek Kuś
    • 2
  • Leszek Sirko
    • 1
  1. 1.Institute of PhysicsPolish Academy of SciencesWarszawaPoland
  2. 2.Center for Theoretical PhysicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations