Recent Trends in Prevention and Treatment of Dental Caries and Periodontal Disease by Natural Plant Products

Chapter

Abstract

Dental caries and periodontal disease are the most common oral diseases showing striking geographic variations, socio-economic patterns and severity of distribution all over the world. These diseases pose challenges when it comes to determining their microbial etiology. Dental caries is a localized, progressive demineralization of the hard tissues of the crown and root surfaces of teeth. The demineralization is caused by acids produced by bacteria, particularly Streptococcus mutans and lactobacilli that ferment dietary carbohydrates. This occurs within a bacteria-laden gelatinous material called dental plaque that adheres to tooth surfaces and becomes colonized by bacteria Periodontal disease is a group of illnesses in the form of gingivitis and periodontitis, located in the gums and dental support structures (ligament and alveolar bone) and are produced by certain bacteria encountered in subgingival plaque. In the present clinical scenario globally, there is a great interest in the use of antimicrobial agents for prevention and treatment of plaque-related oral diseases due to the spread of antibiotic resistance in oral cavity microorganisms. There has been an extensive research on the effectiveness of minimum inhibitory concentration of agents for cariogenic and periodontopathogenic microorganisms. Among antibiotic alternatives are therapies derived from complementary and alternative medicine to cope with the wide-spread problem of antibiotic resistance. A view to the past indicates that in ancient times, India was probably the most advanced country in dental health services in the world. In the old ayurvedic literature of India, details of gum diseases have been described and forms of treatment have also been described. The practice of oral hygiene was included in daily rituals. Ancient scriptures such as vedas and puranas proposed that the natural dentition could be preserved by appropriate periodontal treatment. In the present times, ayurvedic treatment is still very popular amongst rural and uneducated people in India. For the treatment of periodontal disease, massaging of gums with oils and ointments prepared from herbs is still advised. There are an overwhelming number of studies on the antimicrobial activities of plant and natural products derivatives. The prevention and management of dental caries and periodontal disease historically has been the dominant focus of most dentists’ professional efforts. As the putative dental caries and periodontal pathogens are developing resistance against the commercially available antibiotics, the need of hour is to explore novel drugs from natural products that can be used in the prevention and treatment of not only the dental infections but also of other dreadful diseases for which there has been no optimal drug yet discovered.

References

  1. Akpata, E. S., & Akinremisi, E. O. (1997). Antimicrobial activity of extract from some African chewing sticks. Oral Surgery, Oral Medicine, and Oral Pathology, 44, 717–725.CrossRefGoogle Scholar
  2. Aligne, C. A., Moss, M. E., Auinger, P., & Weitzman, M. (2003). Association of pediatric dental caries with passive smoking. Journal of the American Medical Association, 289, 1258–1264.CrossRefGoogle Scholar
  3. al-Otaibi, M. (2004). The miswak (chewing stick) and oral health. Studies on oral hygiene practices of urban Saudi Arabians. Swedish Dental Journal, 16, 72–75.Google Scholar
  4. Amruthesh, S. (2008). Dentistry and Ayurveda – IV: Classification and management of common oral diseases. Indian Journal of Dental Research, 19, 52–61.CrossRefGoogle Scholar
  5. Anand, S. C., Rai, B., Jain, R., & Kharb, S. (2007). Dental caries and oral hygiene status of 8 to 12 year school children of Rohtak: A brief report. The Internet Journal of Dental Science, 5 (On Webpage: http://ispub.com)
  6. Aneja, K. R., & Joshi, R. (2010). Antimicrobial activity of Syzygium aromaticum and its bud oil against dental cares causing microorganisms. Ethnobotanical Leaflets, 14, 960–975.Google Scholar
  7. Aneja, K. R., Joshi, R., & Sharma, C. (2010a). Potency of Barleria prionitis L. bark extracts against oral diseases causing strains of bacteria and fungi of clinical origin. New York Science Journal, 3(11), 5–12.Google Scholar
  8. Aneja, K. R., Joshi, R., & Sharma, C. (2010b). In vitro antimicrobial activity of Sapindus mukorossi and Emblica officinalis against dental caries pathogens. Ethnobotanical Leaflets, 14, 402–412.Google Scholar
  9. Bairy, I., Reeja, S., Siddharth Rao, P. S., Bhat, M., & Shivananda, P. G. (2002). Evaluation of antibacterial activity of Mangifera indica on anaerobic dental microflora based on in vivo studies. Indian Journal of Pathology & Microbiology, 45, 307–310.Google Scholar
  10. Bakri, I. M., & Douglas, C. W. (2005). Inhibitory effect of garlic extract on oral bacteria. Archives of Oral Biology, 50, 645–651.CrossRefGoogle Scholar
  11. Bhattacharya, S., Virani, S., Zavro, M., & Haas, G. J. (2003). Inhibition of Streptococcus mutans and other oral Streptococci by hop (Humulus lupulus L.) constituents. Economic Botany, 57, 118–125.CrossRefGoogle Scholar
  12. Botelho, M. A., Nogueira, N. A. P., Bastos, G. M., Fonseca, S. G. C., Lemos, T. L. G., Matos, F. T. A., Montenegro, D., Heukelbach, J., Rao, V. S., & Brito, G. A. C. (2007). Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Brazilian Journal of Medical and Biological Research, 40, 349–356.CrossRefGoogle Scholar
  13. Casas, A., Herrera, D., Martín-Carnes, J., González, I., O’ Connor, A., & Sanz, M. (2007). Influence of sampling strategy on microbiologic results before and after periodontal treatment. Journal of Periodontology, 78, 1103.CrossRefGoogle Scholar
  14. Castillo, A., Mesa, F., Liebana, J., Garcia-Martinez, O., Ruiz, S., Garcia-Valdecasas, J., & O’Valle, F. (2007). Periodontal and oral microbiological status of an adult population undergoing haemodialysis: A cross-sectional study. Journal of Periodontology, 13, 198–205.Google Scholar
  15. Cha, J. D., Jeong, M. R., Choi, H. J., Jeong, S. I., Moon, S. E., & Yun, S. I. (2005). Chemical composition and antimicrobial activity of the essential oil of Artemisia lavandulaefolia. Planta Medica, 71, 575–577.CrossRefGoogle Scholar
  16. Cha, J. D., Jeong, M. R., Jeong, S. I., Moon, S. E., Kil, B. S., & Yun, S. I. (2007). Chemical composition and antimicrobial activity of the essential oil of Cryptomeria japonica. Phytotherapy Research, 21, 295–299.CrossRefGoogle Scholar
  17. Chitme, H. R., Chandra, R., & Kaushik, S. (2003). Studies on anti-diarrheal activity of calotropis gigantea R. Br. in experimental animals. Journal of Pharmacy and Pharmaceutical Sciences, 7, 70–75.Google Scholar
  18. Coates, A. R. M., & Hu, Y. (2007). Novel approaches to developing new antibiotics for bacterial infections. British Journal of Pharmacology, 152, 1147–1154.CrossRefGoogle Scholar
  19. Darouiche, R. O., Mansouri, M. D., Gawande, P. V., & Madhyastha, S. (2008). Efficacy of combination of chlorhexidine and protamine sulphate against device-associated pathogens. Journal of Antimicrobial Chemotherapy, 61(3), 651–657.CrossRefGoogle Scholar
  20. Dhar, V., Jain, A., Van Dyke, T. E., & Kohli, A. (2007). Prevalence of dental caries and treatment needs in the school – going children of rural areas in Udaipur district. Journal of the Indian Society of Pedodontics and Preventive Dentistry, 25, 119–121.CrossRefGoogle Scholar
  21. Didry, N., Dubreuil, L., Trotin, F., & Pinkas, M. (1998). Antimicrobial activity of aerial parts of Drosera peltata Smith on oral bacteria. Journal of Ethnopharmacology, 60, 91–96.CrossRefGoogle Scholar
  22. Dzink, J. L., & Socransky, S. S. (1985). Comparative in vitro activity of sanguinarine against oral microbial isolates. Antimicrobial Agents and Chemotherapy, 27, 663–665.CrossRefGoogle Scholar
  23. Feres, M., Figueiredo, L. C., Barreto, I. M., Coelho, M. H., Araujo, M. W., & Cortelli, S. C. (2005). In vitro antimicrobial activity of plant extracts and propolis in saliva samples of healthy and periodontally-involved subjects. Journal of the International Academy of Periodontology, 7, 90–96.Google Scholar
  24. Filoche, S. K., Soma, K., & Sissons, C. H. (2005). Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiology and Immunology, 20, 221–225.CrossRefGoogle Scholar
  25. Fujita, K., Matsumoto-Nakano, M., Inagaki, S., & Ooshima, T. (2007). Biological functions of glucan-binding protein B of Streptococcus mutans. Oral Microbiology and Immunology, 22, 289–292.CrossRefGoogle Scholar
  26. Giannobile, W. V. (2007). Periodontal surveillance–implications in the promotion of public health. Journal of Periodontology, 78, 1177.CrossRefGoogle Scholar
  27. Groppo, F. C., Ramacciato, J. C., Motta, R. H. L., Ferraresi, P. M., & Sartoratto, A. (2007). Antimicrobial activity of garlic against oral streptococci. International Journal of Dental Hygiene, 5, 109–115.CrossRefGoogle Scholar
  28. Hajishengallis, G., & Russell, M. W. (2008). Molecular approaches to vaccination against oral infections. In A. H. Rogers (Ed.), Molecular oral microbiology. Norfolk: Caister Academic Press.Google Scholar
  29. Hamilton-Miller, J. M. (2004). Antibiotic resistance from two perspectives: Man and microbe. International Journal of Antimicrobial Agents, 23, 209–212.CrossRefGoogle Scholar
  30. Hamlet, S. M., Ganashan, N., Cullinan, M. P., Westerman, B., Palmer, J. E., & Seymour, G. J. (2008). A 5-year longitudinal study of Tannerella forsythia prth genotype: Association with loss of attachment. Journal of Periodontology, 79, 144–149.CrossRefGoogle Scholar
  31. Hammer, K. A., Dry, L., Johnson, M., Michalak, E. M., Carson, C. F., & Riley, T. V. (2003). Susceptibility of oral bacteria to Melaleuca alternifolia (tea tree) oil in vitro. Oral Microbiology and Immunology, 18, 389–392.CrossRefGoogle Scholar
  32. Hanioka, T., Tanaka, M., & Ojima, M. (1994). Effect of topical application of coenzyme Q10 on adult periodontitis. Molecular Aspects of Medicine, 15, S241–S248.CrossRefGoogle Scholar
  33. Hannah, J. J., Johnson, J. D., & Kuftinec, M. M. (1989). Long-term clinical evaluation of toothpaste and oral rinse containing sanguinaria extract in controlling plaque, gingival inflammation, and sulcular bleeding during orthodontic treatment. American Journal of Orthodontics and Dentofacial Orthopedics, 96, 199–207.CrossRefGoogle Scholar
  34. Harper, D. S., Mueller, L. J., & Fine, J. B. (1990). Clinical efficacy of a dentifrice and oral rinse containing sanguinaria extract and zinc chloride during 6 months of use. Journal of Periodontology, 61, 352–358.CrossRefGoogle Scholar
  35. Hebbar, S. S., Harsha, V. H., Shripathi, V., & Hegde, G. R. (2004). Ethnomedicine of Dharwad district in Karnataka India. Plants used in oral health care. Journal of Ethnopharmacology, 94, 261–266.CrossRefGoogle Scholar
  36. Hu, J. P., Takahashi, N., & Yamada, T. (2000). Coptidis rhizoma inhibits growth and proteases of oral bacteria. Oral Diseases, 6, 297–302.CrossRefGoogle Scholar
  37. Hwang, J. K., Shim, J. S., & Pyun, Y. R. (2000). Antibacterial activity of xanthorrhizol from Curcuma xanthorrhiza against oral pathogens. Fitoterapia, 71, 321–323.CrossRefGoogle Scholar
  38. Hwang, J. K., Chung, J. Y., Baek, N. I., & Park, J. H. (2004). Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans. International Journal of Antimicrobial Agents, 23, 377–381.CrossRefGoogle Scholar
  39. Jandourek, A., Vaishampayan, J. K., & Vazquez, J. A. (1998). Efficacy of melaleuca oral solution for the treatment of fluconazole refractory oral candidiasis in AIDS patients. AIDS, 12, 1033–1037.CrossRefGoogle Scholar
  40. Joshi, N., Rajesh, R., & Sunitha, M. (2005). Prevalence of dental caries among school children in Kulasekharam village; a correlated prevalence survey. Journal of the Indian Society of Pedodontics and Preventive Dentistry, 23, 138–140.CrossRefGoogle Scholar
  41. Kalemba, D., & Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry, 10, 813–829.CrossRefGoogle Scholar
  42. Katsura, H., Tsukiyama, R. I., Suzuki, A., & Kobayashi, M. (2001). In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrobial Agents and Chemotherapy, 45, 3009–3013.CrossRefGoogle Scholar
  43. Khalessi, A. M., Pack, A. R., Thomson, W. M., & Tompkins, G. R. (2004). An in vivocstudy of the plaque control efficacy of Persica: A commercially available herbal mouthwash containing extracts of Salvadora persica. International Dental Journal, 54, 279–283.CrossRefGoogle Scholar
  44. Kohda, H., Kozai, K., Nagasaka, N., Miyake, Y., Suginaka, H., & Hidaka, K. (1986). Prevention of dental caries by oriental folk medicines – active principles of Zizyphi fructus for inhibition of insoluble glucan formation by cariogenic bacterium Streptococcus mutans. Planta Medica, 2, 119–120.CrossRefGoogle Scholar
  45. Koo, H., Gomes, B. P., Rosalen, P. L., Ambrosano, G. M., Park, Y. K., & Cury, J. A. (2000). In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens. Archives of Oral Biology, 45, 141–148.CrossRefGoogle Scholar
  46. Koo, H., Nino De Guzman, P., Schobel, B. D., Vacca Smith, A. V., & Bowen, W. H. (2006). Influence of cranberry juice on glucan-mediated processes involved in Streptococcus mutans biofilm development. Caries Research, 40, 20–27.CrossRefGoogle Scholar
  47. Kuramitsu, H. K., He, X., Lux, R., Anderson, M. H., & Shi, W. (2007). Interspecies interactions within oral microbial communities. Microbiology and Molecular Biology Reviews, 71, 653–670.CrossRefGoogle Scholar
  48. Ledder, R. G., Gilbert, P., Huws, S. A., Aarons, L., Ashley, M. P., Hull, P. S., & McBain, A. J. (2007). Molecular analysis of the subgingival microbiota in health and disease. Applied and Environmental Microbiology, 73, 516–523.CrossRefGoogle Scholar
  49. Lee, M. J., Lambert, J. D., Prabhu, S., Meng, X., Lu, H., & Haliakal, P. (2004). Delivery of tea polyphenols to the oral cavity by green tea leaves and black tea extract. Cancer Epidemiology, Biomarkers & Prevention, 13, 132–137.CrossRefGoogle Scholar
  50. Li, X.-C., Cai, L., & Wu, C. D. (1997). Antimicrobial compounds from Ceanothus americanus against oral pathogens. Phytochemistry, 46, 97–102.CrossRefGoogle Scholar
  51. Liu, X. T., Pan, Q., Shi, Y., Williams, I. D., Sung, H. H., & Zhang, Q. (2006). ent-rosane and labdane diterpenoids from Sagittaria sagittifolia and their antibacterial activity against three oral pathogens. Journal of Natural Products, 69, 255–260.CrossRefGoogle Scholar
  52. Loo, W. T. Y., Jin, L. J., Cheung, M. N. B., & Chow, L. W. C. (2010). Evaluation of ellagic acid on the activities of oral bacteria with the use of adenosine triphosphate (ATP) bioluminescence assay. African Journal of Biotechnology, 9(25), 3938–3943.Google Scholar
  53. Luzhetskyy, A., Pelzer, S., & Bechthold, A. (2007). The future of natural products as a source of new antibiotics. Current Opinion in Investigational Drugs, 8, 608–613.Google Scholar
  54. Lynch, A. S., & Robertson, G. T. (2008). Bacterial and fungal biofilm infections. Annual Review of Medicine, 59, 415–428.CrossRefGoogle Scholar
  55. Meghashyam, B., Nagesh, L., & Ankola, A. (2007). Dental caries status and treatment needs of children of fisher folk communities, residing in the coastal areas of Karnataka region, South India. The West Indian Medical Journal, 56, 96–98.Google Scholar
  56. Minaya-Sánchez, M., Medina-Solís, C. E., Maupome, G., Vallejos-Sánchez, A. A., Casanova-­Rosado, F., & de María, L. Y. (2007). Prevalence of and risk indicators for chronic periodontitis in males from Campeche, Mexico. Revista De Salud Pública, 9, 388–398.CrossRefGoogle Scholar
  57. Moulari, B., Lboutounne, H., Chaumont, J. P., Guillaume, Y., Millet, J., & Pellequer, Y. (2006). Potentiation of the bactericidal activity of Harungana madagascariensis Lam. ex Poir. (Hypericaceae) leaf extract against oral bacteria using poly (D, L-lactide-coglycolide) nanoparticles: In vitro study. Acta Odontologica Scandinavica, 64, 153–158.CrossRefGoogle Scholar
  58. Namba, T., Tsunezuka, M., & Hattori, M. (1982). Dental caries prevention by traditional Chinese medicines. Planta Medica, 44, 400–406.CrossRefGoogle Scholar
  59. Nibali, L., Ready, D. R., Parkar, M., Brett, P. M., Wilson, M., Tonetti, M. S., & Griffiths, G. S. (2007). Gene polymorphisms and the prevalence of key periodontal pathogens. Journal of Dental Research, 86, 416–420.CrossRefGoogle Scholar
  60. Nikolaev, Y. A., & Plakunov, V. K. (2007). Biofilm – “City of microbes” or an analogue of multicellular organisms? Microbiology, 76, 125–138.CrossRefGoogle Scholar
  61. Nishikawara, F., Nomura, Y., Imai, S., Senda, A., & Hanada, N. (2007). Evaluation of cariogenic bacteria. European Journal of Dentistry, 1, 31–39.Google Scholar
  62. Nostro, A., Cannatelli, M. A., Crisafi, G., Musolino, A. D., Procopio, F., & Alonzo, V. (2004). Modifications of hydrophobicity, in vitro adherence and cellular aggregation of Streptococcus mutans by Helichrysum italicum extract. Letters in Applied Microbiology, 38, 423–427.CrossRefGoogle Scholar
  63. Oliveira, L. B., Sheiham, A., & Bönecker, M. (2008). Exploring the association of dental caries with social factors and nutritional status in Brazilian preschool children. European Journal of Oral Sciences, 116, 37–43.CrossRefGoogle Scholar
  64. Ooshima, T., Osaka, Y., Sasaki, H., Osawa, K., Yasuda, H., & Matsumura, M. (2000). Caries inhibitory activity of cacao bean husk extract in in-vitro and animal experiments. Archives of Oral Biology, 45, 639–645.CrossRefGoogle Scholar
  65. Park, K. M., You, J. S., Lee, H. Y., Baek, N. I., & Hwang, J. K. (2003). Kuwanon G: An antibacterial agent from the root bark of Morus alba against oral pathogens. Journal of Ethnopharmacology, 84, 181–185.CrossRefGoogle Scholar
  66. Porto, T. S., Rangel, R., Furtado, N. A. J. C., de Carvalho, T. C., Martins, C. H. G., & Veneziani, R. C. S. (2009). Pimarane-type Diterpenes: Antimicrobial activity against oral pathogens. Molecules, 14, 191–199.CrossRefGoogle Scholar
  67. Prabu, G. R., Gnanamani, A., & Sadulla, S. (2006). Guaijaverin – A plant flavonoid as potential antiplaque agent against Streptococcus mutans. Journal of Applied Microbiology, 101, 487–495.CrossRefGoogle Scholar
  68. Prashant, G. M., Chandu, G. N., Murulikrishna, K. S., & Shafiulla, M. D. (2007). The effect of mango and neem extract on four organisms causing dental caries: Streptococcus mutans, Streptococcus salivavius, Streptococcus mitis, and Streptococcus sanguinis: An in vitro study. Indian Journal of Dental Research, 18, 148–151.CrossRefGoogle Scholar
  69. Rahim, Z. H., & Khan, H. B. (2006). Comparative studies on the effect of crudeaqueous (CA) and solvent (CM) extracts of clove on the cariogenicproperties of Streptococcus mutans. Journal of Oral Science, 48, 117–123.CrossRefGoogle Scholar
  70. Razak, F. A., & Rahim, Z. H. (2003). The anti-adherence effect of Piper betle and Psidium guajava extracts on the adhesion of early settlers in dental plaque to saliva-coated glass surfaces. Journal of Oral Science, 45, 201–206.CrossRefGoogle Scholar
  71. Ruby, J., & Goldner, M. (2007). Nature of symbiosis in oral disease. Journal of Dental Research, 86, 8–11.CrossRefGoogle Scholar
  72. Saboia-Dantas, C. J., Coutrin de Toledo, L. F., Sampaio-Filho, H. R., & Siqueira, J. F., Jr. (2007). Herpesviruses in asymptomatic apical periodontitis lesions: An immunohistochemical approach. Oral Microbiology and Immunology, 22, 320–325.CrossRefGoogle Scholar
  73. Sahni, P. S., Gillespie, M. J., Botto, R. W., & Otsuka, A. S. (2002). In vitro testing of xylitol as an anticariogenic agent. General Dentistry, 50, 340–343.Google Scholar
  74. Santos, A. (2003). Evidence-based control of plaque and gingivitis. Journal of Clinical Periodontology, 30(Suppl 5), 13–16.CrossRefGoogle Scholar
  75. Sato, M., Fujiwara, S., Tsuchiya, H., Fujii, T., Iinuma, M., & Tosa, H. (1996). Flavones with antibacterial activity against cariogenic bacteria. Journal of Ethnopharmacology, 54, 171–176.CrossRefGoogle Scholar
  76. Sato, M., Tanaka, H., Fujiwara, S., Hirata, M., Yamaguchi, R., & Etoh, H. (2002). Antibacterial property of isoflavonoids isolated from Erythrina variegata against cariogenic oral bacteria. Phytomedicine, 9, 427–433.CrossRefGoogle Scholar
  77. Saxer, U. P., Stauble, A., Szabo, S. H., & Menghini, G. (2003). Effect of mouth washing with tea tree oil on plaque and inflammation. Schweizer Monatsschrift für Zahnmedizin, 113, 985–996.Google Scholar
  78. Sedlacek, M. J., & Walker, C. (2007). Antibiotic resistance in an in vitro subgingival biofilm model. Oral Microbiology and Immunology, 22, 333–339.CrossRefGoogle Scholar
  79. Serfaty, R., & Itic, J. (1988). Comparative trial with natural herbal mouthwash versus chlorhexidine in gingivitis. Journal of Clinical Dentistry, 1, A34.Google Scholar
  80. Song, J. H., Kim, S. K., Chang, K. W., Han, S. K., Yi, H. K., & Jeon, J. G. (2006). In vitro inhibitory effects of Polygonum cuspidatum on bacterial viability and virulence factors of Streptococcus mutans and Streptococcus sobrinus. Archives of Oral Biology, 51, 1131–1140.CrossRefGoogle Scholar
  81. Soukoulis, S., & Hirsch, R. (2004). The effects of a tea tree oil-containing gel on plaque and chronic gingivitis. Australian Dental Journal, 49, 78–83.CrossRefGoogle Scholar
  82. Sterer, N. (2006). Antimicrobial effect of mastic gum methanolic extract against Porphyromonas gingivalis. Journal of Medicinal Food, 9, 290–292.CrossRefGoogle Scholar
  83. Takahashi, N., Ishihara, K., Kato, T., & Okuda, K. (2007). Susceptibility of Actinobacillus actinomycetemcomitans to six antibiotics decreases as biofilm matures. Journal of Antimicrobial Chemotherapy, 59, 59–65.CrossRefGoogle Scholar
  84. Thomashow, L. S., Bonsall, R. F., & David, M. (2008). Detection of antibiotics produced by soil and rhizosphere microbes in situ. In P. Karlovsky (Ed.), Secondary metabolites in soil ecology (pp. 23–36). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  85. Tichy, J., & Novak, J. (1998). Extraction, assay, and analysis of antimicrobials from plants with activity against dental pathogens (Streptococcus sp.). Journal of Alternative and Complementary Medicine, 4, 39–45.CrossRefGoogle Scholar
  86. Toukairin, T., Uchino, K., Iwamoto, M., Murakami, S., Tatebayashi, T., & Ogawara, H. (1991). New polyphenolic 5-nucleotidase inhibitor isolated from the wine grape “Koshu” and their biological effects. Chemical & Pharmaceutical Bulletin (Tokyo), 39, 1480–1483.CrossRefGoogle Scholar
  87. Trongtokit, Y., Rongsriyyam, Y., Komilamisra, N., Krisackphong, P., & Apiwathnasorn, C. (2004). Laboratory and field trial of developing medicinal local Thai plant products against four species of mosquito vectors. The Southeast Asian Journal of Tropical Medicine and Public Health, 35, 325–333.Google Scholar
  88. Tsuchiya, H., Sato, M., Iinuma, M., Yokoyama, J., Ohyama, M., & Tanaka, T. (1994). Inhibition of the growth of cariogenic bacteria in vitro by plant flavanones. Experientia, 50, 846–849.CrossRefGoogle Scholar
  89. Welin-Neilands, J., & Svensater, G. (2007). Acid tolerance of biofilm cells of Streptococcus mutans. Applied and Environmental Microbiology, 73, 5633–5638.CrossRefGoogle Scholar
  90. Wolinsky, L. E., Mania, S., Nachnani, S., & Ling, S. (1996). The inhibiting effect of aqueous Azadirachta indica (Neem) extract upon bacterial properties influencing in vitro plaque formation. Journal of Dental Research, 75, 816–822.CrossRefGoogle Scholar
  91. Xiao, Y., Liu, T. J., Huang, Z. W., Zhou, X. D., & Li, J. Y. (2004). The effect of natural medicine on adherence of Streptococcus mutans to salivary acquired pellicle. Sichuan Da Xue Xue Baoxue Ban, 35, 687–689.Google Scholar
  92. Yamnkell, S., & Emling, R. C. (1988). Two-month evaluation of Parodontax dentifrice. Journal of Clinical Dentistry, 1, A41.Google Scholar
  93. Zadik, Y., & Levin, L. (2008). Clinical decision making in restorative dentistry, endodontics, and antibiotic prescription. Journal of Dental Education, 72, 81–86.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of BiotechnologyUniversity Institute of Engineering and Technology, Kurukshetra UniversityKurukshetraIndia
  2. 2.Department of BiotechnologyAmbala College of Engineering and Applied ResearchAmbalaIndia

Personalised recommendations