Plant Natural Products as a Potential Source of Antimicrobial Agents: An Overview and a Glimpse on Recent Developments

  • Mohd. Shahid
  • Fazal K. Dar
  • Abdulrahman Y. Ismaeel
  • Ali Al-Mahmeed
  • Khalid Al Sindi
  • Abida Malik
  • Haris M. Khan
Chapter

Abstract

Natural products of plant origin are being used to cure infections since ancient times. However, the real breakthrough in the field of antimicrobial agents was after the advent of a chemical substance produced by a strain of the mold Penicillium, by Alexander Fleming, that he named penicillin in 1928. Since that time, the fungi and higher plants have been searched for antibacterial compounds, including cephalosporins and aminoglycosides. In some of our previous articles published during years 2009–2010 we reviewed the literature on plant natural products harboring the antibacterial and antifungal properties. In this article we will explore the very recent developments in the said field with an emphasis on antibacterial, antifungal, anti-parasitic and antiviral potentials (especially against Human Immunodeficiency virus and Influenza virus) and some of the other interesting recent developments.

Keywords

Influenza Virus Avian Influenza Antiplasmodial Activity Antimycobacterial Activity Bitter Melon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The technical support provided by Tomy Kaitharath is deeply appreciated by the authors.

References

  1. Ahmad, B., Khan, I., Bashir, S., Azam, S., & Ali, N. (2011). The antifungal, cytotoxic, antitermite and insecticidal activities of Zizyphus jujube. Pakistan Journal of Pharmaceutical Sciences, 24(4), 489–493.Google Scholar
  2. Andrade, A. C., Del Sorbo, G., Van Nistelrooy, J. G., & Waard, M. A. (2000). The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. [Research Support, Non-U.S. Gov’t]. Microbiology, 146(Pt 8), 1987–1997.Google Scholar
  3. Anitha, V. T., Antonisamy, J. M., & Jeeva, S. (2012). Anti-bacterial studies on Hemigraphis colorata (Blume) H.G. Hallier and Elephantopus scaber L. Asian Pacific Journal of Tropical Medicine, 5(1), 52–57. doi: 10.1016/S1995-7645(11)60245-9.CrossRefGoogle Scholar
  4. Anonymous. (2012a, 14 June). History of penicillin. Retrieved June 17, 2012, from http://en.wikipedia.org/wiki/History_of_penicillin
  5. Anonymous. (2012b). Flora of Pakistan. Retrieved June 14, 2012, from http://www.efloras.org/florataxon.aspx?flora_id=5&taxon_id=242424827
  6. Anonymous. (2012c). Retrieved June, 14, 2012, from http://florawww.eeb.uconn.edu/200202424.html
  7. Anonymous. (2012d). Pictorial identification manual of cites plants in India. Retrieved June, 14, 2012, from http://www.bsienvis.nic.in/citesplant.htm#Gnetummontanum
  8. Anonymous. (2012e). Pharmacovigilance for anti-TB medicines. Retrieved June 14, 2012, from http://www.who.int/tb/en/
  9. Awah, F. M., Uzoegwu, P. N., & Ifeonu, P. (2011). In vitro anti-HIV and immunomodulatory potentials of Azadirachta indica (Meliaceae) leaf extract. African Journal of Pharmacy and Pharmacology, 5(11), 1353–1359.Google Scholar
  10. Bueno, J., Coy, E. D., & Stashenko, E. (2011). Antimycobacterial natural products–an opportunity for the Colombian biodiversity [Research Support, Non-U.S. Gov’t; Review]. Revista Española de Quimioterapia, 24(4), 175–183.Google Scholar
  11. Chaves-Lopez, C., Martin-Sanchez, A. M., Fuentes-Zaragoza, E., Viuda-Martos, M., Fernandez-­Lopez, J., Sendra, E., Sayas, E., & Angel Perez Alvarez, J. (2012). Role of Oregano (Origanum vulgare) essential oil as a surface fungus inhibitor on fermented sausages: Evaluation of its effect on microbial and physicochemical characteristics. Journal of Food Protection, 75(1), 104–111. doi: 10.4315/0362-028X.JFP-11-184.CrossRefGoogle Scholar
  12. Chusri, S., Villanueva, I., Voravuthikunchai, S. P., & Davies, J. (2009). Enhancing antibiotic activity: A strategy to control Acinetobacter infections [Research Support, Non-U.S. Gov’t]. Journal of Antimicrobial Chemotherapy, 64(6), 1203–1211. doi: 10.1093/jac/dkp381.CrossRefGoogle Scholar
  13. Cowan, M. M. (1999). Plant products as antimicrobial agents [Review]. Clinical Microbiology Reviews, 12(4), 564–582.Google Scholar
  14. Devendra, B. N., Srinivas, N., & Solmon, K. S. (2012). A comparative pharmacological and phytochemical analysis of in vivo & in vitro propagated Crotalaria species [Comparative Study]. Asian Pacific Journal of Tropical Medicine, 5(1), 37–41. doi: 10.1016/S1995-7645(11)60242-3.CrossRefGoogle Scholar
  15. Falcao-Silva, V. S., Silva, D. A., Souza Mde, F., & Siqueira-Junior, J. P. (2009). Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Herissantia tiubae (Malvaceae) [Research Support, Non-U.S. Gov’t]. Phytotherapy Research, 23(10), 1367–1370. doi: 10.1002/ptr.2695.CrossRefGoogle Scholar
  16. Filho, J. R., de Sousa Falcao, H., Batista, L. M., Filho, J. M., & Piuvezam, M. R. (2010). Effects of plant extracts on HIV-1 protease [Review]. Current HIV Research, 8(7), 531–544.CrossRefGoogle Scholar
  17. Garcia, D., Ramos, A. J., Sanchis, V., & Marin, S. (2012). Effect of Equisetum arvense and Stevia rebaudiana extracts on growth and mycotoxin production by Aspergillus flavus and Fusarium verticillioides in maize seeds as affected by water activity [Research Support, Non-U.S. Gov’t]. International Journal of Food Microbiology, 153(1–2), 21–27. doi: 10.1016/j.ijfoodmicro.2011.10.010.CrossRefGoogle Scholar
  18. Gibbons, S., Leimkugel, J., Oluwatuyi, M., & Heinrich, M. (2003). Activity of Zanthoxylum clava-herculis extracts against multi-drug resistant methicillin-resistant Staphylococcus aureus (mdr-MRSA). Phytotherapy Research, 17(3), 274–275. doi: 10.1002/ptr.1112.CrossRefGoogle Scholar
  19. Guo, X. L., Leng, P., Yang, Y., Yu, L. G., & Lou, H. X. (2008). Plagiochin E, a botanic-derived phenolic compound, reverses fungal resistance to fluconazole relating to the efflux pump [Research Support, Non-U.S. Gov’t]. Journal of Applied Microbiology, 104(3), 831–838. doi: 10.1111/j.1365-2672.2007.03617.x.CrossRefGoogle Scholar
  20. Guzman, J. D., Gupta, A., Bucar, F., Gibbons, S., & Bhakta, S. (2012). Antimycobacterials from natural sources: Ancient times, antibiotic era and novel scaffolds [Research Support, Non-U.S. Gov’t; Review]. Frontiers in Bioscience, 17, 1861–1881.CrossRefGoogle Scholar
  21. Haidari, M., Ali, M., Ward Casscells, S., 3rd, & Madjid, M. (2009). Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine, 16(12), 1127–1136. doi: 10.1016/j.phymed.2009.06.002.CrossRefGoogle Scholar
  22. Ignacimuthu, S., & Shanmugam, N. (2010). Antimycobacterial activity of two natural alkaloids, vasicine acetate and 2-acetyl benzylamine, isolated from Indian shrub Adhatoda vasica Ness. leaves [Research Support, Non-U.S. Gov’t]. Journal of Biosciences, 35(4), 565–570.CrossRefGoogle Scholar
  23. Jamil, M. D., Haq, I. U. D., Mirza, B. D., & Qayyum, M. D. (2012). Isolation of antibacterial compounds from Quercus dilatata L. through bioassay guided fractionation. Annals of Clinical Microbiology and Antimicrobials, 11(1), 11. doi: 10.1186/1476-0711-11-11.CrossRefGoogle Scholar
  24. Jimenez-Arellanes, A., Meckes, M., Torres, J., & Luna-Herrera, J. (2007). Antimycobacterial triterpenoids from Lantana hispida (Verbenaceae) [Research Support, Non-U.S. Gov’t]. Journal of Ethnopharmacology, 111(2), 202–205. doi: 10.1016/j.jep.2006.11.033.CrossRefGoogle Scholar
  25. Jothy, S. L., Zakaria, Z., Chen, Y., Lau, Y. L., Latha, L. Y., Shin, L. N., & Sasidharan, S. (2011). Bioassay-directed isolation of active compounds with antiyeast activity from a Cassia fistula seed extract [Research Support, Non-U.S. Gov’t]. Molecules, 16(9), 7583–7592. doi: 10.3390/molecules16097583.CrossRefGoogle Scholar
  26. Klos, M., van de Venter, M., Milne, P. J., Traore, H. N., Meyer, D., & Oosthuizen, V. (2009). In vitro anti-HIV activity of five selected South African medicinal plant extracts [Research Support, Non-U.S. Gov’t]. Journal of Ethnopharmacology, 124(2), 182–188. doi: 10.1016/j.jep.2009.04.043.CrossRefGoogle Scholar
  27. Konate, K., Mavoungou, J. F., Lepengue, A. N., Aworet-Samseny, R. R., Hilou, A., Souza, A., Dicko, M. H., & M’batchi, B. (2012). Antibacterial activity against beta- lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Annals of Clinical Microbiology and Antimicrobials, 11(1), 18. doi: 10.1186/1476-0711-11-18.CrossRefGoogle Scholar
  28. Lee, Y. S., Kang, O. H., Choi, J. G., Oh, Y. C., Keum, J. H., Kim, S. B., Jeong, G. S., Kim, Y. C., Shin, D. W., & Kwon, D. Y. (2010). Synergistic effect of emodin in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus [Research Support, Non-­U.S. Gov’t]. Pharmaceutical Biology, 48(11), 1285–1290. doi: 10.3109/13880201003770150.CrossRefGoogle Scholar
  29. Lin, W. Y., Peng, C. F., Tsai, I. L., Chen, J. J., Cheng, M. J., & Chen, I. S. (2005). Antitubercular constituents from the roots of Engelhardia roxburghiana [Research Support, Non-U.S. Gov’t]. Planta Medica, 71(2), 171–175. doi: 10.1055/s-2005-837786.CrossRefGoogle Scholar
  30. Lopez, S. N., Furlan, R. L., & Zacchino, S. A. (2011). Detection of antifungal compounds in Polygonum ferrugineum Wedd. extracts by bioassay-guided fractionation. Some evidences of their mode of action [Research Support, Non-U.S. Gov’t]. Journal of Ethnopharmacology, 138(2), 633–636. doi: 10.1016/j.jep.2011.09.038.CrossRefGoogle Scholar
  31. Martin, F., Grkovic, T., Sykes, M. L., Shelper, T., Avery, V. M., Camp, D., Quinn, R. J., & Davis, R. A. (2011). Alkaloids from the Chinese vine Gnetum montanum [Research Support, Non-­U.S. Gov’t]. Journal of Natural Products, 74(11), 2425–2430. doi: 10.1021/np200700f.CrossRefGoogle Scholar
  32. Michalet, S., Cartier, G., David, B., Mariotte, A. M., Dijoux-franca, M. G., Kaatz, G. W., Stavri, M., & Gibbons, S. (2007). N-caffeoylphenalkylamide derivatives as bacterial efflux pump inhibitors [Research Support, Non-U.S. Gov’t]. Bioorganic & Medicinal Chemistry Letters, 17(6), 1755–1758. doi: 10.1016/j.bmcl.2006.12.059.CrossRefGoogle Scholar
  33. Nibret, E., & Wink, M. (2011). Trypanocidal and cytotoxic effects of 30 Ethiopian medicinal plants. Zeitschrift für Naturforschung. Section C, 66(11–12), 541–546.CrossRefGoogle Scholar
  34. Nibret, E., Ashour, M. L., Rubanza, C. D., & Wink, M. (2010). Screening of some Tanzanian medicinal plants for their trypanocidal and cytotoxic activities [Research Support, Non-U.S. Gov’t]. Phytotherapy Research, 24(6), 945–947. doi: 10.1002/ptr.3066.Google Scholar
  35. O’Donnell, G., & Gibbons, S. (2007). Antibacterial activity of two canthin-6-one alkaloids from Allium neapolitanum [Research Support, Non-U.S. Gov’t]. Phytotherapy Research, 21(7), 653–657. doi: 10.1002/ptr.2136.CrossRefGoogle Scholar
  36. Okokon, J. E., Etebong, E. O., Udobang, J. A., & Essien, G. E. (2012). Antiplasmodial and analgesic activities of Clausena anisata. Asian Pacific Journal of Tropical Medicine, 5(3), 214–219. doi: 10.1016/S1995-7645(12)60027-3.CrossRefGoogle Scholar
  37. Pengsuparp, T., Cai, L., Constant, H., Fong, H. H., Lin, L. Z., Kinghorn, A. D., Pezzuto, J. M., Cordell, G. A., Ingolfsdottir, K., Wagner, H., et al. (1995). Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase [Research Support, U.S. Gov’t, P.H.S.]. Journal of Natural Products, 58(7), 1024–1031.CrossRefGoogle Scholar
  38. Rahman, A. A., Samoylenko, V., Jain, S. K., Tekwani, B. L., Khan, S. I., Jacob, M. R., Midiwo, J. O., Hester, J. P., Walker, L. A., & Muhammad, I. (2011). Antiparasitic and antimicrobial isoflavanquinones from Abrus schimperi [Research Support, N.I.H., Extramural; Research Support, U.S. Gov’t, Non-P.H.S.]. Natural Product Communications, 6(11), 1645–1650.Google Scholar
  39. Rege, A. A., Ambaye, R. Y., & Deshmukh, R. A. (2010). In-vitro testing of anti-HIV activity of some medicinal plants. Indian Journal of Natural Products and Resources, 1(2), 193–199.Google Scholar
  40. Rojas, R., Caviedes, L., Aponte, J. C., Vaisberg, A. J., Lewis, W. H., Lamas, G., Sarasara, C., Gilman, R. H., & Hammond, G. B. (2006). Aegicerin, the first oleanane triterpene with wide-­ranging antimycobacterial activity, isolated from Clavija procera [Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov’t; Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Natural Products, 69(5), 845–846. doi: 10.1021/np050554l.CrossRefGoogle Scholar
  41. Sabde, S., Bodiwala, H. S., Karmase, A., Deshpande, P. J., Kaur, A., Ahmed, N., Chauthe, S. K., Brahmbhatt, K. G., Phadke, R. U., Mitra, D., Bhutani, K. K., & Singh, I. P. (2011). Anti-HIV activity of Indian medicinal plants [Letter; Research Support, Non-U.S. Gov’t]. Journal of Natural Medicines, 65(3–4), 662–669. doi: 10.1007/s11418-011-0513-2.CrossRefGoogle Scholar
  42. Santos, K. K., Matias, E. F., Sobral-Souza, C. E., Tintino, S. R., Morais-Braga, M. F., Guedes, G. M., Santos, F. A., Sousa, A. C., Rolon, M., Vega, C., de Arias, A. R., Costa, J. G., Menezes, I. R., & Coutinho, H. D. (2012). Trypanocide, cytotoxic, and antifungal activities of Momordica charantia. Pharmaceutical Biology, 50(2), 162–166. doi: 10.3109/13880209.2011.581672.CrossRefGoogle Scholar
  43. Shahid, M. (2012). On the roads to H1N1 pandemic era: Drive safe and fearless using colour-­coded masks. Asian Pacific Journal of Tropical Medicine, 5(4), 333–334. doi: 10.1016/S1995-7645(12)60052-2.CrossRefGoogle Scholar
  44. Shahid, M., & Tripathi, T. (2011). Recent developments in anti-fungal agents: Perspective for combination therapies in treatment of invasive fungal infections. Saarbrücken: Lambert Academic Publications (LAP).Google Scholar
  45. Shahid, M., Shahzad, A., Sobia, F., Sahai, A., Tripathi, T., Singh, A., Khan, H. M., & Umesh. (2009a). Plant Natural Products as a potential source for antibacterial agents: Recent trends. Anti-Infective Agents in Medicinal Chemistry, 8, 211–225.CrossRefGoogle Scholar
  46. Shahid, M., Shahzad, A., Tripathi, T., Sobia, F., Sahai, A., Singh, A., Malik, A., Shujatullah, F., & Khan, H. M. (2009b). Recent trends in plant-derived antifungal agents. Anti-Infective Agents in Medicinal Chemistry, 8(1), 36–49.CrossRefGoogle Scholar
  47. Shahid, M., Sobia, F., Singh, A., Malik, A., Khan, H. M., Jonas, D., & Hawkey, P. M. (2009c). Beta-lactams and beta-lactamase-inhibitors in current- or potential-clinical practice: A comprehensive update [Research Support, Non-U.S. Gov’t; Review]. Critical Reviews in Microbiology, 35(2), 81–108. doi: 10.1080/10408410902733979.CrossRefGoogle Scholar
  48. Sharma, S., Kumar, M., Nargotra, A., Koul, S., & Khan, I. A. (2010). Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis [Research Support, Non-U.S. Gov’t]. Journal of Antimicrobial Chemotherapy, 65(8), 1694–1701. doi: 10.1093/jac/dkq186.CrossRefGoogle Scholar
  49. Shin, W. J., Lee, K. H., Park, M. H., & Seong, B. L. (2010). Broad-spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses [Research Support, Non-U.S. Gov’t]. Microbiology and Immunology, 54(1), 11–19. doi: 10.1111/j.1348-0421.2009.00173.x.CrossRefGoogle Scholar
  50. Singh, J. S., Abhilash, P. C., Singh, H. B., Singh, R. P., & Singh, D. P. (2011). Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives [Research Support, Non-U.S. Gov’t; Review]. Gene, 480(1–2), 1–9. doi: 10.1016/j.gene.2011.03.001.CrossRefGoogle Scholar
  51. Siritapetawee, J., Thammasirirak, S., & Samosornsuk, W. (2012). Antimicrobial activity of a 48-kDa protease (AMP48) from Artocarpus heterophyllus latex [Research Support, Non-U.S. Gov’t]. European Review for Medical and Pharmacological Sciences, 16(1), 132–137.Google Scholar
  52. Smith, E. C., Kaatz, G. W., Seo, S. M., Wareham, N., Williamson, E. M., & Gibbons, S. (2007). The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus [Research Support, Non-U.S. Gov’t]. Antimicrobial Agents and Chemotherapy, 51(12), 4480–4483. doi: 10.1128/AAC.00216-07.CrossRefGoogle Scholar
  53. Song, J. M., Lee, K. H., & Seong, B. L. (2005). Antiviral effect of catechins in green tea on influenza virus [Research Support, Non-U.S. Gov’t]. Antiviral Research, 68(2), 66–74. doi: 10.1016/j.antiviral.2005.06.010.CrossRefGoogle Scholar
  54. Sood, R., Swarup, D., Bhatia, S., Kulkarni, D. D., Dey, S., Saini, M., & Dubey, S. C. (2012). Antiviral activity of crude extracts of Eugenia jambolana Lam. against highly pathogenic avian influenza (H5N1) virus. Indian Journal of Experimental Biology, 50(3), 179–186.Google Scholar
  55. Stermitz, F. R., Lorenz, P., Tawara, J. N., Zenewicz, L. A., & Lewis, K. (2000). Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor [Research Support, Non-U.S. Gov’t; Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1433–1437. doi: 10.1073/pnas.030540597.CrossRefGoogle Scholar
  56. Stermitz, F. R., Beeson, T. D., Mueller, P. J., Hsiang, J., & Lewis, K. (2001). Staphylococcus aureus MDR efflux pump inhibitors from a Berberis and a Mahonia (sensu strictu) species. Biochemical Systematics and Ecology, 29(8), 793–798.CrossRefGoogle Scholar
  57. Stermitz, F. R., Scriven, L. N., Tegos, G., & Lewis, K. (2002). Two flavonols from Artemisa annua which potentiate the activity of berberine and norfloxacin against a resistant strain of Staphylococcus aureus [Letter; Research Support, Non-U.S. Gov’t; Research Support, U.S. Gov’t, P.H.S.]. Planta Medica, 68(12), 1140–1141. doi: 10.1055/s-2002-36347.CrossRefGoogle Scholar
  58. Tan, G. T., Pezzuto, J. M., Kinghorn, A. D., & Hughes, S. H. (1991). Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase [Research Support, Non-U.S. Gov’t; Research Support, U.S. Gov’t, P.H.S.]. Journal of Natural Products, 54(1), 143–154.CrossRefGoogle Scholar
  59. Tang, S., Bremner, P., Kortenkamp, A., Schlage, C., Gray, A. I., Gibbons, S., & Heinrich, M. (2003). Biflavonoids with cytotoxic and antibacterial activity from Ochna macrocalyx [Research Support, Non-U.S. Gov’t]. Planta Medica, 69(3), 247–253. doi: 10.1055/s-2003-38478.CrossRefGoogle Scholar
  60. Wink, M., Ashour, M. L., & El-Readi, M. Z. (2012). Secondary metabolites from plants inhibiting ABC transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents. Frontiers in Microbiology, 3, 130. doi: 10.3389/fmicb.2012.00130.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mohd. Shahid
    • 1
    • 2
    • 3
  • Fazal K. Dar
    • 1
  • Abdulrahman Y. Ismaeel
    • 1
  • Ali Al-Mahmeed
    • 1
  • Khalid Al Sindi
    • 2
  • Abida Malik
    • 3
  • Haris M. Khan
    • 3
  1. 1.Department of Medical Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical SciencesArabian Gulf UniversityManamaKingdom of Bahrain
  2. 2.Department of Pathology, Blood Bank and Laboratory MedicineKing Hamad University HospitalBusaiteenKingdom of Bahrain
  3. 3.Department of Microbiology, Jawaharlal Nehru Medical College and HospitalAligarh Muslim UniversityAligarhIndia

Personalised recommendations