Bioreactors: A Rapid Approach for Secondary Metabolite Production

  • Shiwali Sharma
  • Anwar Shahzad


Bioreactor technology is one of the most challenging avenues in the field of plant biotechnology. Realization of many practical applications for in vitro plant culture systems is dependent on the availability of efficient and well designed bioreactors. For an increasing number of plants bioreactors demonstrated a number of important advantages over conventional semi solid micropropagation including several fold increase in multiplication rates and reduction in space, energy and labor. Bioreactors provide an automated, cost-effective system for commercial in vitro plant propagation and low cost secondary metabolite production. They can also provide the technical means to perform controlled studies aimed at understanding specific biological, chemical, or physical effects. However several major bottlenecks which includes contamination, lack of protocols and production procedure, increased hyperhydricity and problems of foaming, shear stress and release of growth inhibiting compounds still restricts the commercial application of this technology. Many efforts are being made to design the bioreactors so as to eliminate all the limitations faced. Though still the existence of an efficient complete bioreactor design is unrealized.


Somatic Embryo Hairy Root Adventitious Root Hairy Root Culture Bubble Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. Anwar Shahzad gratefully acknowledges the financial support provided by UGC and UP-CST in the form of research projects (vide no. 39-369/2010 SR and vide no. CST/D3836 respectively). Dr. Shiwali Sharma is also thankful to UGC, for the award of Basic Scientific Research Fellowship in Science (1st April 2010) for providing research assistance.


  1. Abbasi, B. H., Liu, R., Saxena, P. K., & Liu, C. Z. (2009). Cichoric acid production from hairy root cultures of Echinacea purpurea grown in a modified airlift bioreactor. Journal of Chemical Technology and Biotechnology, 84, 1697–1701.Google Scholar
  2. Abdullah, M. S., Chakrabarty, D., Yu, K. W., Hahn, E. J., & Paek, K. Y. (2005). Application of bioreactor system for large scale production of Eleutherococcus sessiliflorus somatic embryos in an air-lift bioreactor and the production of eleutherosides. Journal of Biotechnology, 120, 228–236.Google Scholar
  3. Aldridge, S. (2005). New bio-manufacturing opportunities and challenges. Genetic Engineering News, 25, 1–16.Google Scholar
  4. Alvard, D., Cote, F., & Teisson, C. (1993). Comparison of method of liquid medium culture of banana propagation: Effects of temporary immersion of explants. Plant Cell Tissue and Organ Culture, 32, 55–60.Google Scholar
  5. Anonymous. (2008). XDR™ single-use bioreactors. 12 June 2008.
  6. Bentebibel, S., Moyano, E., Palazón, J., Cusidó, R. M., Bonfill, M., Eibl, R., & Piňol, M. T. (2005). Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnology and Bioengineering, 89, 647–655.Google Scholar
  7. Bibila, T. A., & Robinson, D. K. (1995). In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnology Progress, 11, 1–13.Google Scholar
  8. Bonfill, M., Bentebibel, S., Moyano, E., Palazón, J., Cusidó, R. M., Bonfill, M., Eibl, R., & Piňol, M. T. (2007). Paclitaxel and baccatin III production induced by methyljasmonate in free and immobilized cells of Taxus baccta. Biologia Plantarum, 51, 647–652.Google Scholar
  9. Buitelaar, R., Langenhoff, A. A. M., Heidstra, R., & Tramper, J. (1991). Growth and thiophene production by hairy root cultures of Tagetes patula in various two-liquid-phase bioreactors. Enzyme and Microbial Technology, 13, 487–494.Google Scholar
  10. Card, C., & Smith, T. (2006). SUB050601, application report draft. Biotechnology, 23, 1054–1058.Google Scholar
  11. Carson, K. L. (2005). Flexibility-the guiding principle for antibody manufacturing. Nature Biotechnology, 23, 1054–1058.Google Scholar
  12. Carvalho, E. B., & Curtis, W. R. (1998). Characterization of fluid-flow resistance in root cultures with a convective flow tubular bioreactor. Biotechnology and Bioengineering, 60, 375–384.Google Scholar
  13. Chatterjee, C., Correll, M. J., Weathers, P. J., Wyslouzil, B. E., & Walcerz, D. B. (1997). Simplified acoustic window mist bioreactor. Biotechnology Techniques, 11, 155–158.Google Scholar
  14. Chattopadhyay, S., Srivastava, A., Bhojwani, S. S., & Bisaria, V. S. (2002). Production of ­podophyllotoxin by plant cell cultures of Podophyllum hexandrum in bioreactor. Journal of Bioscience and Bioengineering, 93(2), 15–220.Google Scholar
  15. Choi, Y. E., Kim, Y. S., & Paek, K. Y. (2006). Types and design of bioreactors for hairy root culture. In S. Dutta Gupta & Y. Ibaraki (Eds.), Plant tissue culture engineering (Focus on biotechnology, Vol. 6, pp. 161–171). Dordrecht: Springer.Google Scholar
  16. Choi, S. M., Son, S. H., Yun, S. R., Kwon, O. W., Seon, J. H., & Paek, K. Y. (2000). Pilot scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tissue and Organ Culture, 62, 187–193.Google Scholar
  17. Choi, S. M., Lee, O., Kwon, S., Kwak, S. S., Yu, D., & Lee, H. S. (2003). High expression of a human lactoferrin in transgenic tobacco cell cultures. Biotechnology Letters, 25, 213–218.Google Scholar
  18. Collignon, F., Gelbras, V., Havelange, N., Drugmand, J. C., Debras, F., Mathieu, E., Halloin, V., & Castillo, J. (2007). CHO cell cultivation and antibody production in a new disposable bioreactor based on magnetic driven centrifugal pump. ( Cited October 20).
  19. Cuperus, S., Eibl, R., Huhn, T., & Amado, R. (2007). Plant cell culture based platform: Investigating biochemical processes in wine production. BioForum Europe, 6, 2–4.Google Scholar
  20. Cui, X.-H., Chakrabarty, D., Lee, E.-J., & Paek, K.-Y. (2010). Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresource Technology, 101(12), 4708–4716.Google Scholar
  21. Dalm, M. C. F. (2007). Acoustic perfusion processes for hybridoma cultures: viability, cell cycle and metabolic analysis. Academic dissertation at Wageningen Universiteit, pp. 123–141.Google Scholar
  22. Danckwerts, P. V. (1951). Significance of liquid-film coefficients in gas-absorption. Journal of Industrial and Engineering Chemistry, 43, 1460–1467.Google Scholar
  23. Davioud, E., Kan, C., Hamon, J., Tempé, J., & Husson, H.-P. (1989). Production of indole alkaloids by in vitro root cultures from Catharanthus trichophyllus. Phytochemistry, 28, 2675–2680.Google Scholar
  24. Deng, X., Qin, S., Zhang, Q., Jiang, P., Cui, Y., & Li, X. (2009). Microprojectile bombardment of Laminaria japonica gametophytes and rapid propagation of transgenic lines within a bubble-­column bioreactor. Plant Cell Tissue and Organ Culture, 97, 253–261.Google Scholar
  25. DePalma, A. (2006). Bright sky for single-use bioprocess products. GEN, 26, 50–57.Google Scholar
  26. DiIorio, A. A., Cheetham, R. D., & Weathers, P. J. (1992). Growth of transformed roots in a nutrient mist bioreactor: reactor performance and evaluation. Applied Microbiology and Biotechnology, 37, 457–462.Google Scholar
  27. Doran, P. M. (2000). Foreign proteins production in plant tissue cultures. Current Opinion in Biotechnology, 11, 199–204.Google Scholar
  28. Ducos, J. P., Chantanumat, P., Vuong, P., Lambot, C., & Pétiard, V. (2007a). Mass propagation of robusta clones: Disposable plastic bags for pre-germination of somatic embryos by temporary immersion. Acta Horticulturae ISHS, 764, 33–40.Google Scholar
  29. Ducos, J. P., Labbe, G., Lambot, C., & Pétiard, V. (2007b). Pilot scale process for the production of pre-germinated somatic embryos of selected robusta (Coffea canephora) clones. In Vitro Cellular and Developmental Biology-Plant, 43, 652–659.Google Scholar
  30. Eibl, R., & Eibl, D. (2002). Bioreactors for plant cell and tissue cultures. In K. M. Oksman-­Caldentey & W. H. Barz (Eds.), Plant biotechnology and transgenic plants (pp. 163–199). New York: Marcel Dekker.Google Scholar
  31. Eibl, R., & Eibl, D. (2006). Design and use of the wave bioreactor for plant cell culture. In S. Dutta & Y. Baraki (Eds.), Plant tissue culture engineering (pp. 203–227). Dordrecht: Springer.Google Scholar
  32. Eibl, R., & Eibl, D. (2007). Disposable bioreactors for cell culture-based bioprocessing. Achema Worldwide News, 2, 8–10.Google Scholar
  33. Eibl, R., & Eibl, D. (2008). Design of bioreactors suitable for plant cell and tissue cultures. Phytochemistry Reviews, 7, 593–598.Google Scholar
  34. Eibl, R., Werner, S., & Eibl, D. (2009). Disposable bioreactors for plant liquid cultures at Litre-scale. Engineering in Life Sciences, 9(3), 156–164.Google Scholar
  35. Eibl, R., & Eibl, D. (2009a). Application of disposable bag-bioreactors in tissue engineering and for the production of therapeutic agents. In G. Kasper, R. Pörtner, & M. V. Griensven (Eds.), Bioreactor systems for tissue engineering (pp. 183–207). Heidelberg: Springer.Google Scholar
  36. Eibl, R., & Eibl, D. (2009b). Disposable bioreactors in cell culture-based upstream processing. BioProcess International, 7(Supplement 1), 20–25.Google Scholar
  37. Eibl, R., Eibl, D., Pechmnn, G., Ducommun, C., Lisica, L., Lisica, S., Blum, P., et al. (2003). Produktion pharmazeutischer Wirkstoffe in disposable Systemen bis zum 100 L Massstab, Teil I, KTI-Projekt 5844.2 FHS, Final report, primary data of the experiments and summary of calculations, University of Applied Sciences, Switzerland unpublished.Google Scholar
  38. Etienne, H., Lartaud, M., Michaux-Ferriére, N., Carron, M. P., Berthouly, M., & Teisson, C. (1997). Improvement of somatic embryogenesis in Hevea brasilensis (Mull. Arg.) using the temporary immersion technique. In Vitro Cellular and Developmental Biology-Plant, 33, 81–87.Google Scholar
  39. Evans, J. (2006). Plant-derived drug. Accessed 10 Apr 2007.
  40. Farid, S. S. (2006). Established bioprocesses for producing antibodies as a basis for future planning. Advances in Biochemical Engineering/Biotechnology, 101, 1–42.Google Scholar
  41. Farid, S. S., Washbrook, J., & Titchener-Hooker, N. J. (2005). Decision-support tool for assessing bio-manufacturing strategies under uncertainty: Stainless steel versus disposable equipment for clinical trial material preparation. Biotechnology Progress, 21, 486–497.Google Scholar
  42. Flanagan, N. (2007). Disposable reach out to new markets. GEN, 27, 38–39.Google Scholar
  43. Flores, H. E., & Curtis, W. R. (1992). Approaches to understanding and manipulating the biosynthetic potential of plant roots. Annals of the New York Academy of Sciences, 665, 188–209.Google Scholar
  44. Fox, S. (2005). Disposable bioprocessing: The impact of disposable bioreactors on the CMO industry. Contract Pharmaceutical, 7(5), 62–74.Google Scholar
  45. Fulzele, D. P. (2000). Bioreactor technology for large scale cultivation of plant cell suspension cultures and production of bioactive compounds. BARC Newsletter,
  46. Gao, J., Hooker, B. S., & Anderson, D. B. (2004). Expression of functional human coagulation factor XIII A-domain in plant cell suspensions and whole plants. Protein Expression and Purification, 37, 89–96.Google Scholar
  47. Hao, Z., Ouyang, F., Geng, Y., Deng, X., Hu, Z., & Chen, Z. (1998). Propagation of potato tubers in a nutrient mist bioreactor. Biotechnology Techniques, 12, 641–644.Google Scholar
  48. Hellwig, S., Drossard, J., Twyman, R. M., & Fischer, R. (2004). Plant cell cultures for the production of recombinant proteins. Nature Biotechnology, 22, 1415–1422.Google Scholar
  49. Hilton, M. G., & Rhodes, M. J. C. (1990). Growth and hyoscyamine production of hairy root cultures of Datura stramonium in a modified stirred tank reactor. Applied Microbiology and Biotechnology, 33, 132–138.Google Scholar
  50. Holobiuc, I., & Blindu, R. (2006). In vitro culture of the protected rare species Gentiana lutea L. for conservative purpose. Contributii Botanice, 42, 125–134.Google Scholar
  51. Huang, S.-Y., Hung, C.-H., & Chou, S.-N. (2004). Innovative strategies for operation of mist trickling reactors for enhanced hairy root proliferation and secondary metabolite productivity. Enzyme and Microbial Technology, 35(1), 22–32.Google Scholar
  52. International Union of Pure and Applied Chemistry (IUPAC). (1997). Compendium of chemical terminology (2nd ed.). Oxford: Blackwell Scientific.Google Scholar
  53. Jolicoeur, M., Williams, R. D., Chavarie, C., Fortin, J. A., & Archambault, J. (1999). Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in an airlift bioreactor. Biotechnology and Bioengineering, 63(2), 224–232.Google Scholar
  54. Kiearn, P. M., O’Donnell, H. J., Malone, D. M., & MacLoughilin, P. F. (1995). Biotechnology and Bioengineering, 45, 415.Google Scholar
  55. Kim, S. J. (2001). Effect of environmental conditions on growth and quality of chrysanthemum plantlets in bioreactor culture. MS thesis, Chungbuk National University, KoreaGoogle Scholar
  56. Kim, Y. H., & Yoo, Y. J. (1993). Development of a bioreactor for high density culture of hairy roots. Biotechnology Techniques, 7, 859–862.Google Scholar
  57. Kim, Y., Wyslouzil, B. E., & Weathers, P. J. (2002). Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cellular and Developmental Biology-Plant, 38, 1–10.Google Scholar
  58. Kloke, A., Rubenwolfa, S., Bücking, C., Gescher, J., Kerzenmacher, S., Zengerle, R., & Stetten, F. (2010). A versatile miniature bioreactor and its application to bioelectrochemistry studies. Biosensors and Bioelectronics, 25, 2559–2565.Google Scholar
  59. Kondo, O., Honda, H., Taya, M., & Kobayashi, T. (1989). Comparison of growth properties of carrot hairy root in various bioreactors. Applied Microbiology and Biotechnology, 32, 291–294.Google Scholar
  60. Kurata, K., Ibaraki, Y., & Goto, E. (1991). Propagation of potato tubers in a nutrient mist bioreactor. American Society of Agricultural Engineers, 34, 621–624.Google Scholar
  61. Kwok, K. H., & Doran, P. M. (1995). Kinetic and stoichiometric analysis of hairy roots in a segmented bubble column reactor. Biotechnology Progress, 11, 429–435.Google Scholar
  62. Le Flem-Bonhomme, V., Laurain-Mattar, D., & Fliniaux, M. A. (2004). Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant, by A. rhizogenes LBA 9402. Planta, 218, 890–893.Google Scholar
  63. Lee, D., & Natesan, E. (2006). Evaluating genetic containment strategies for transgenic plants. Trends in Biotechnology, 24, 109–114.Google Scholar
  64. Liu, C. Z., Wang, Y. C., Guo, C., Ouyang, F., Ye, H. C., & Li, G. F. (1998). Production of artemisinin by shoot cultures of Artemisia annua L. in a modified inner-loop mist bioreactor. Plant Science, 135, 211–217.Google Scholar
  65. Liu, C. Z., Wang, Y. C., Zhao, B., Guo, C., Ouyang, F., Ye, H. C., et al. (1999). Development of a nutrient mist bioreactor for growth of hairy roots. In Vitro Cellular and Developmental Biology-Plant, 35, 271–274.Google Scholar
  66. Marshall, B. (2006). Accessed 10 Apr 2007.
  67. McKelvey, S. A., Gehrig, J. A., Hollar, K. A., & Curtis, W. R. (1993). Growth of plant root cultures in liquid- and gas-dispersed reactor environments. Biotechnology Progress, 9, 317–322.Google Scholar
  68. Mehrotra, S., Kukreja, A. K., Khanuja, S. P. S., & Mishra, B. N. (2008). Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electronic Journal of Biotechnology, 11, 1–7.Google Scholar
  69. Meijer, J. J., Ten Hoopen, H. J. G., Van Gameren, Y. M., Luyben, K. C. A. M., & Libbenga, K. R. (1994). Effect of hydrodynamic stress on the growth of plant cells in batch and continuous culture. Enzyme and Microbial Technology, 16, 467.Google Scholar
  70. Mishra, B. N., & Ranjan, R. (2008). Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnology and Applied Biochemistry, 49, 1–10.Google Scholar
  71. Morrow, K. J. (2007). Improving protein production strategies. GEN, 28, 37–39.Google Scholar
  72. Mulbagal, V., & Tsay, H. S. (2004). Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2, 29–48.Google Scholar
  73. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.Google Scholar
  74. Nuutila, A. M., Toivonen, L., & Kauppinen, V. (1994). Bioreactor studies on hairy root cultures of Catharanthus roseus: comparison of three bioreactor types. Biotechnology Techniques, 8, 61–66.Google Scholar
  75. Oka, K. M., Hongo, Y., Taya, M., & Tone, S. (1992). Culture of red beet hairy roots in a column-type reactor. Journal of Chemical Engineering of Japan, 25, 490–495.Google Scholar
  76. Paek, K. Y., Hahn, E. J., & Son, S. H. (2001). Application of bioreactors of large scale micropropagation systems of plants. In Vitro Cellular and Developmental Biology-Plant, 37, 149–157.Google Scholar
  77. Paek, K. Y., Chakrabarty, D., & Hahn, E. J. (2005). Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue and Organ Culture, 81, 287–300.Google Scholar
  78. Phisalaphong, M., & Linden, J. C. (1999). Kinetic studies of paclitaxel production by Taxus canadensis cultures in batch and semicontinuous with total cell recycle. Biotechnology Progress, 15, 1072–1077.Google Scholar
  79. Prasad, V. S. S. (2007). Development of liquid culture and machine vision systems for efficient micropropagation of Gladiolus hybridus Hort. PhD thesis, Indian Institute of Technology, Kharagpur, India.Google Scholar
  80. Ramakrishnan, D., Salim, J., & Curtis, W. R. (1994). Inoculation and tissue distribution in pilot-scale plant root culture bioreactors. Biotechnology Techniques, 8, 639-644.Google Scholar
  81. Ritala, A., Wahlström, E. H., Holkeri, H., Hafren, A., Akel Ainen, K. M., Baez, J., Akinen, K. M., & Nuutila, A. M. (2008). Production of a recombinant industrial protein using barley cell cultures. Protein Expression and Purification, 59, 274–281.Google Scholar
  82. Saifullah, S. M., Gul, S., & Khan, M. (2008). The dinoflagellate genus Ornithocercus stein from north Arabian Sea shelf of Pakistan. Pakistan Journal of Botany, 40(2), 849–857.Google Scholar
  83. Sajc, L., Grubisic, D., & Novakovic, G. V. (2000). Bioreactors for plant engineering: an out for further research. Biochemical Engineering Journal, 4, 89–99.Google Scholar
  84. Schürch, C., Blum, P., & Zülli, F. (2008). Potential of plant cells in culture for cosmetic application. Phytochemistry Reviews, 7, 599–605.Google Scholar
  85. Seki, M., Ohzora, C., Takeda, M., & Furusaki, S. (1997). Taxol (Paclitaxel) production using free and immobilized cells of Taxus cuspidata. Biotechnology and Bioengineering, 53(1), 214–219.Google Scholar
  86. Shanks, J. V., & Morgan, J. (1999). Plant hairy root culture. Current Opinion in Biotechnology, 10, 151–155.Google Scholar
  87. Shin, K. S., Murthy, H. N., Ko, J. Y., & Paek, K. Y. (2002). Growth and betacyanin production by hairy roots of Beta vulgarisin airlift bioreactors. Biotechnology Letters, 24, 2067–2069.Google Scholar
  88. Singh, V. (1999). Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology, 30, 149–158.Google Scholar
  89. Singh, G., & Curtis, W. R. (1994). Reactor design for plant root culture. In P. D. Shargool & T. T. Ngo (Eds.), Biotechnological applications plant cultures: CRC series of current topics in plant molecular biology (pp. 185–206). Boca Raton: CRC Press.Google Scholar
  90. Soderberg, A. C. (2002). Fermentation design (2nd ed., pp. 67–121). Norwich: Knovel.Google Scholar
  91. Su, W. W. (2006). Bioreactor engineering for recombinant protein production using plant cell suspension culture. In S. Dutta & Y. Baraki (Eds.), Plant tissue culture engineering (pp. 135–159). Dordrecht: Springer.Google Scholar
  92. Suresh, B., Bais, H. P., Raghavarao, K. S. M. S., Ravishankar, G. A., & Ghildyal, N. P. (2005). Comparative evaluation of bioreactor design using Tagetes patula L. hairy roots as a model system. Process Biochemistry, 40, 1509–1515.Google Scholar
  93. Takayama, S., & Akita, M. (2006). Bioengineering aspects of bioreactor application in plant propagation. In S. Dutta & Y. Baraki (Eds.), Plant tissue culture engineering (pp. 83–100). Dordrecht: Springer.Google Scholar
  94. Taya, M., Yoyoma, A., Kondo, O., Kobayashi, T., & Matsui, C. (1989). Growth characteristics of plant hairy roots and their cultures in bioreactors. Journal of Chemical Engineering of Japan, 22, 84–89.Google Scholar
  95. Terrier, B., Courtois, D., Hénault, N., Cuvier, A., Bastin, M., Aknin, A., Dubreuil, J., & Pétiard, V. (2007). Two new disposable bioreactors for plant cell culture: The Wave and Undertow bioreactor and the Slug bubble bioreactor. Biotechnology and Bioengineering, 96, 914–923.Google Scholar
  96. Thermo Fisher Scientific. (2007). AN003 REV, Application note.Google Scholar
  97. Tikhomiroff, C., Allais, S., Klvana, M., Hisiger, S., & Jolicoeur, M. (2002). Continuous selective extraction of secondary metabolites from Catharanthus roseus. Hairy roots with silicon oil in a two-liquid-phase bioreactor. Biotechnology Progress, 18, 1003–1009.Google Scholar
  98. Towler, M. J., Kim, Y., Wyslouzil, B. E., Correll, M. J., & Weathers, P. J. (2006). Design, development, and applications of mist bioreactors for micropropagation and hairy root culture. Plant Tissue Culture Engineering, 6, 119–134.Google Scholar
  99. Uozumi, N., Makino, S., & Kobayashi, T. (1995). 20-Hydroxyecdysone production in Ajuga hairy root controlling intracellular phosphate based on kinetic model. Journal of Fermentation and Bioengineering, 80, 362–368.Google Scholar
  100. Van Gulik, W. M., Ten Hoopen, H. J. G., & Heijnen, J. J. (1992). Kinetics and stoichiometry of growth of plant cell cultures of Catharanthus roseus and Nicotiana tabacum in batch and continuous fermentors. Biotechnology and Bioengineering, 40, 863–874.Google Scholar
  101. Weathers, P. J., & Giles, K. L. (1988). Regeneration of plants using nutrient mists. In Vitro Cellular and Development Biology, 24, 727–732.Google Scholar
  102. Weathers, P. J., Cheetham, R. D., & Giles, K. L. (1988). Dramatic increases in shoot number and length for Musa, Cordyline, and Nephrolepis using nutrient mists. Acta Horticulturae, 230, 39–44.Google Scholar
  103. Weathers, P. J., Wyslouzil, B. E., Wobbe, K. K., Kim, Y. J., & Yigit, E. (1999). The biological response of hairy roots to O2 levels in bioreactors. In Vitro Cellular and Developmental Biology-Plant, 35, 286–289.Google Scholar
  104. Weber, W., Weber, E., Geisse, S., & Memmert, K. (2002). Optimization of protein expression and establishment of the Wave Bioreactor for Baculovirus/insect cell culture. Cytotechnology, 38, 77–85.Google Scholar
  105. Westgate, P. J., Curtis, W. R., Emery, A. H., Hasegawa, P. M., & Heinstein, P. F. (1991). Approximation of continuous growth of Cephalotaxus harringtonia plant cell cultures using fed-batch operation. Biotechnology and Bioengineering, 38, 241–246.Google Scholar
  106. Whitney, P. J. (1992). Novel bioreactors for the growth of roots transformed by Agrobacterium rhizogenes. Enzyme and Microbial Technology, 14(1), 13–17.Google Scholar
  107. Williams, G. R. C., & Doran, P. M. (2000). Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity. Biotechnology Progress, 16, 391–401.Google Scholar
  108. Wilson, P. D. G. (1997). The pilot-scale cultivation of transformed roots. In P. M. Doran (Ed.), Hairy roots: culture and applications (pp. 179–190). Amsterdam: Harwood Academic.Google Scholar
  109. Wink, M., Alfermann, A. W., Franke, R., Wetterauer, B., Distl, M., Windhoevel, J., Krohn, O., et al. (2005). Sustainable production of phytochemicals by plant in vitro cultures: Anticancer agents. Plant Gene Research, 3, 90–100.Google Scholar
  110. Woo, S. H., & Park, J. M. (1993). Multiple shoot culture Dianthus caryophyllus using mist culture system. Biotechnology Techniques, 7, 697–702.Google Scholar
  111. Woo, S. H., Park, J. M., & Yang, J. (1996). Root culture using a mist culture system and estimation of scale-up feasibility. Journal of Chemical Technology and Biotechnology, 66, 355–362.Google Scholar
  112. Wu, C.-H., Murthy, H. N., Hahn, E.-J., & Paek, K.-Y. (2007). Improved production of caffeic acid derivatives in suspension cultures of Echinacea purpurea by medium replenishment strategy. Archives of Pharmacal Research, 30(8), 945–949.Google Scholar
  113. Wurm, F. (2005). Manufacture of recombinant biopharmaceutical proteins by cultivated mammalian cells in bioreactors. In J. Knäblein (Ed.), Modern biopharmaceuticals: Design, development and optimization (pp. 723–759). Weinheim: Wiley-VCH.Google Scholar
  114. Yu, S., & Doran, P. M. (1994). Oxygen requirements and mass transfer in hairy root culture. Biotechnology and Bioengineering, 44, 880–887.Google Scholar
  115. Yu, S., Mahagamasekera, M. G. P., Williams, G. R. C., Kanokwaree, K., & Doran, P. M. (1997). Oxygen effects in hairy root culture. In P. M. Doran (Ed.), Hairy roots: culture and applications (pp. 139–150). Amsterdam: Harwood Academic.Google Scholar
  116. Yu, K. W., Gao, W. Y., Hahn, E. J., & Paek, K. Y. (2001). Effects of macro elements and nitrogen source on adventitious root growth and ginsenoside production in ginseng (Panax ginseng C.A. Meyer). Journal of Plant Biology, 44, 179–184.Google Scholar
  117. Zhong, J. J. (2001). Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Advances in Biochemical Engineering/Biotechnology, 72, 1–26.Google Scholar
  118. Ziv, M. (1999). Organogenic plant regeneration in bioreactors. In A. Altmann, M. Ziv, & S. Izhar (Eds.), Plant biotechnology and in vitro biology in the 21st century (pp. 673–676). Dordrecht: Kluwer Academic.Google Scholar
  119. Ziv, M. (2000). Bioreactor technology for plant micropropagation. Horticultural Review, 24, 1–30.Google Scholar
  120. Ziv, M. (2005). Simple bioreactors for mass propagation of plants. Plant Cell Tissue and Organ Culture, 81, 277–285.Google Scholar
  121. Ziv, M., Ronen, G., & Raviv, M. (1998). Proliferation of meristematic clusters in disposable pre-­sterilized plastic bio-containers for the large-scale micropropagation of plants. In Vitro Cellular and Developmental Biology-Plant, 34, 152–158.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Plant Biotechnology Section, Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations