Skip to main content

The Role of Epimutations of the Mismatch Repair Genes in the Development of Lynch Syndrome Related Cancers

  • Chapter
  • First Online:
Book cover DNA Alterations in Lynch Syndrome
  • 827 Accesses

Abstract

Lynch syndrome, characterised by an autosomal dominant predisposition to the development of young-onset colorectal, endometrial and additional cancers exhibiting the microsatellite instability phenotype, is typically caused by heterozygous germline mutations within one of the DNA mismatch repair genes. The MLH1 and MSH2 genes are the most frequently mutated of the mismatch repair genes. Until the turn of this century, no pathogenic mutation could be identified in up to one third of cases with a strong clinical suspicion of Lynch syndrome, but screens for disease-causing mutations within alternative genes were largely fruitless. In the past decade, an alternative aetiological mechanism for the development Lynch syndrome-­related cancers emerged, which involved epigenetic-based dysregulation of the two key mismatch repair genes MLH1 and MSH2. Termed a constitutional epimutation, this type of defect manifests as methylation of a single allele of the CpG island promoter accompanied by transcriptional inactivation of the affected allele within normal somatic tissues, in the context of a normal gene sequence. MSH2 epimutations are caused by linked germline deletions of the neighbouring EPCAM gene, although MSH2 itself remains intact, and demonstrate classic dominant inheritance. However MLH1 epimutations can arise spontaneously in the carrier and are reversible between generations, resulting in unpredictable non-Mendelian patterns of inheritance, or display dominant inheritance with particular genetic alleles due to the presence of a linked genetic alteration within or nearby MLH1. Constitutional epimutations are thus associated with complex underlying mechanisms, and furthermore, give rise to atypical cases of Lynch syndrome both in terms of phenotypic heterogeneity and the risk of intergenerational transmission. This confounds molecular diagnosis, clinical management and genetic counselling of carriers and their families. As more information emerges from clinical and molecular research in this nascent field, tailored management strategies need to be devised so patients can realise the benefits of these discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36. doi:10.1093/carcin/bgp220, bgp220 [pii]

    Article  PubMed  CAS  Google Scholar 

  2. Holliday R (1987) The inheritance of epigenetic defects. Science (New York) 238(4824):163–170

    Article  CAS  Google Scholar 

  3. Suter CM, Martin DI, Ward RL (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36(5):497–501

    Article  PubMed  CAS  Google Scholar 

  4. Hitchins MP, Ward RL (2009) Constitutional (germline) MLH1 epimutation as an aetiological mechanism for hereditary non-polyposis colorectal cancer. J Med Genet 46(12):793–802. doi:10.1136/jmg.2009.068122, jmg.2009.068122 [pii]

    Article  PubMed  CAS  Google Scholar 

  5. Hesson LB, Hitchins MP, Ward RL (2010) Epimutations and cancer predisposition: importance and mechanisms. Curr Opin Genet Dev 20(3):290–298. doi:10.1016/j.gde.2010.02.005, S0959-437X(10)00030-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  6. Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD (2002) A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-­high tumor. Cancer Res 62(14):3925–3928

    PubMed  CAS  Google Scholar 

  7. Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS, Ng WF, Tsui WY, Lo MW, Tam WY, Li VS, Leung SY (2006) Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38(10):1178–1183

    Article  PubMed  CAS  Google Scholar 

  8. Lynch HT, Lynch JF (2004) Lynch syndrome: history and current status. Dis Markers 20(4–5):181–198

    Article  PubMed  Google Scholar 

  9. Peltomaki P (2005) Lynch syndrome genes. Fam Cancer 4(3):227–232

    Article  PubMed  Google Scholar 

  10. Knudson AG (1996) Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122(3):135–140

    Article  PubMed  CAS  Google Scholar 

  11. Tannergard P, Liu T, Weger A, Nordenskjold M, Lindblom A (1997) Tumorigenesis in colorectal tumors from patients with hereditary non-polyposis colorectal cancer. Hum Genet 101(1):51–55

    Article  PubMed  CAS  Google Scholar 

  12. Hitchins M, Williams R, Cheong K, Halani N, Lin VA, Packham D, Ku S, Buckle A, Hawkins N, Burn J, Gallinger S, Goldblatt J, Kirk J, Tomlinson I, Scott R, Spigelman A, Suter C, Martin D, Suthers G, Ward R (2005) MLH1 germline epimutations as a factor in hereditary nonpolyposis colorectal cancer. Gastroenterology 129(5):1392–1399

    Article  PubMed  CAS  Google Scholar 

  13. Morak M, Schackert HK, Rahner N, Betz B, Ebert M, Walldorf C, Royer-Pokora B, Schulmann K, von Knebel-Doeberitz M, Dietmaier W, Keller G, Kerker B, Leitner G, Holinski-Feder E (2008) Further evidence for heritability of an epimutation in one of 12 cases with MLH1 promoter methylation in blood cells clinically displaying HNPCC. Eur J Hum Genet 16(7):804–811

    Article  PubMed  CAS  Google Scholar 

  14. Goel A, Nguyen TP, Leung HC, Nagasaka T, Rhees J, Hotchkiss E, Arnold M, Banerji P, Koi M, Kwok CT, Packham D, Lipton L, Boland CR, Ward RL, Hitchins MP (2011) De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one. Int J Cancer 128(4):869–878. doi:10.1002/ijc.25422

    Article  PubMed  CAS  Google Scholar 

  15. Hitchins MP, Owens SE, Kwok CT, Godsmark G, Algar UF, Ramesar RS (2011) Identification of new cases of early-onset colorectal cancer with an MLH1 epimuta­tion in an ethnically diverse South African cohort. Clin Genet 80(5):428–434. doi:10.1111/j.1399-0004.2011.01660.x

    Article  PubMed  CAS  Google Scholar 

  16. Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, Ward RL (2007) Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med 356(7):697–705. doi:10.1056/NEJMoa064522, 356/7/697 [pii]

    Article  PubMed  CAS  Google Scholar 

  17. Kwok CT, Ward RL, Hawkins NJ, Hitchins MP (2010) Detection of allelic imbalance in MLH1 expression by pyrosequencing serves as a tool for the identification of germline defects in Lynch syndrome. Fam Cancer. doi:10.1007/s10689-009-9314-0

  18. Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJ, Khachigian LM, Polly P, Goldblatt J, Ward RL (2011) Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5′UTR. Cancer Cell 20(2):200–213. doi:10.1016/j.ccr.2011.07.003, S1535-6108(11)00260-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  19. Hitchins MP, Ward RL (2007) Erasure of MLH1 methylation in spermatozoa-implications for epigenetic inheritance. Nat Genet 39(11):1289. doi:10.1038/ng1107-1289, ng1107-1289 [pii]

    Article  PubMed  CAS  Google Scholar 

  20. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomaki P, Ramsey SD, Rodriguez-Bigas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S (2004) Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268

    Article  PubMed  CAS  Google Scholar 

  21. Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116(6):1453–1456

    Article  PubMed  CAS  Google Scholar 

  22. Vasen HF, Mecklin JP, Khan PM, Lynch HT (1991) The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum 34(5):424–425

    Article  PubMed  CAS  Google Scholar 

  23. Valle L, Carbonell P, Fernandez V, Dotor AM, Sanz M, Benitez J, Urioste M (2007) MLH1 germline epimutations in selected patients with early-onset non-polyposis colorectal cancer. Clin Genet 71(3):232–237

    Article  PubMed  CAS  Google Scholar 

  24. Miyakura Y, Sugano K, Akasu T, Yoshida T, Maekawa M, Saitoh S, Sasaki H, Nomizu T, Konishi F, Fujita S, Moriya Y, Nagai H (2004) Extensive but hemiallelic methylation of the hMLH1 promoter region in early-onset sporadic colon cancers with microsatellite instability. Clin Gastroenterol Hepatol 2(2):147–156

    Article  PubMed  CAS  Google Scholar 

  25. Wu PY, Zhang Z, Wang JM, Guo WW, Xiao N, He Q, Wang YP, Fan YM (2012) Germline promoter hypermethylation of tumor suppressor genes in gastric cancer. World J Gastroenterol 18(1):70–78. doi:10.3748/wjg.v18.i1.70

    Article  PubMed  CAS  Google Scholar 

  26. Hendriks Y, Franken P, Dierssen JW, De Leeuw W, Wijnen J, Dreef E, Tops C, Breuning M, Brocker-Vriends A, Vasen H, Fodde R, Morreau H (2003) Conventional and tissue microarray immunohistochemical expression analysis of mismatch repair in hereditary colorectal tumors. Am J Pathol 162(2):469–477

    Article  PubMed  CAS  Google Scholar 

  27. Peltomaki P, Gao X, Mecklin JP (2001) Genotype and phenotype in hereditary nonpolyposis colon cancer: a study of families with different vs. shared predisposing mutations. Fam Cancer 1(1):9–15

    Article  PubMed  CAS  Google Scholar 

  28. Morak M, Koehler U, Schackert HK, Steinke V, Royer-Pokora B, Schulmann K, Kloor M, Hochter W, Weingart J, Keiling C, Massdorf T, Holinski-Feder E (2011) Biallelic MLH1 SNP cDNA expression or constitutional promoter methylation can hide genomic rearrangements causing Lynch syndrome. J Med Genet 48(8):513–519. doi:10.1136/jmedgenet-2011-100050, jmedgenet-2011-100050 [pii]

    Article  PubMed  CAS  Google Scholar 

  29. Hitchins M, Owens S, Kwok CT, Godsmark G, Algar U, Ramesar R (2011) Identification of new cases of early-onset colorectal cancer with an MLH1 epimutation in an ethnically diverse South African cohort(dagger). Clin Genet. doi:10.1111/j.1399-0004.2011.01660.x

  30. Pineda M, Mur P, Iniesta MD, Borras E, Campos O, Vargas G, Iglesias S, Fernandez A, Gruber SB, Lazaro C, Brunet J, Navarro M, Blanco I, Capella G (2012) MLH1 methylation screening is effective in identifying epimutation carriers. Eur J Hum Genet 20(12):1256–1264. doi:10.1038/ejhg.2012.136, ejhg2012136 [pii]

    Article  PubMed  CAS  Google Scholar 

  31. Zhou HH, Yan SY, Zhou XY, Du X, Zhang TM, Cai X, Lu YM, Cai SJ, Shi DR (2008) MLH1 promoter germline-methylation in selected probands of Chinese hereditary non-polyposis colorectal cancer families. World J Gastroenterol 14(48):7329–7334

    Article  PubMed  CAS  Google Scholar 

  32. Gylling A, Ridanpaa M, Vierimaa O, Aittomaki K, Avela K, Kaariainen H, Laivuori H, Poyhonen M, Sallinen SL, Wallgren-Pettersson C, Jarvinen HJ, Mecklin JP, Peltomaki P (2009) Large genomic rearrangements and germline epimutations in Lynch syndrome. Int J Cancer 124(10):2333–2340. doi:10.1002/ijc.24230

    Article  PubMed  CAS  Google Scholar 

  33. Ward RL, Dobbins T, Lindor NM, Rapkins RW, Hitchins MP (2013) Identification of ­constitutional MLH1 epimutations and promoter variants in colorectal cancer patients from the Colon Cancer Family Registry. Genet Med 15(1):25–35. doi:10.1038/gim.2012.91, gim201291 [pii]

    Article  PubMed  Google Scholar 

  34. van Roon EH, van Puijenbroek M, Middeldorp A, van Eijk R, de Meijer EJ, Erasmus D, Wouters KA, van Engeland M, Oosting J, Hes FJ, Tops CM, van Wezel T, Boer JM, Morreau H (2010) Early onset MSI-H colon cancer with MLH1 promoter methylation, is there a genetic predisposition? BMC Cancer 10:180. doi:10.1186/1471-2407-10-180, 1471-2407-10-180 [pii]

    Article  PubMed  Google Scholar 

  35. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38(7):787–793

    Article  PubMed  CAS  Google Scholar 

  36. Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ, Thibodeau SN (1998) Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 58(15):3455–3460

    PubMed  CAS  Google Scholar 

  37. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95(12):6870–6875

    Article  PubMed  CAS  Google Scholar 

  38. Hitchins MP, Lin VA, Buckle A, Cheong K, Halani N, Ku S, Kwok CT, Packham D, Suter CM, Meagher A, Stirzaker C, Clark S, Hawkins NJ, Ward RL (2007) Epigenetic inactivation of a cluster of genes flanking MLH1 in microsatellite-unstable colorectal cancer. Cancer Res 67(19):9107–9116. doi:10.1158/0008-5472.CAN-07-0869, 67/19/9107 [pii]

    Article  PubMed  CAS  Google Scholar 

  39. Wong JJ, Hawkins NJ, Ward RL, Hitchins MP (2011) Methylation of the 3p22 region encompassing MLH1 is representative of the CpG island methylator phenotype in colorectal cancer. Mod Pathol 24(3):396–411. doi:10.1038/modpathol.2010.212, modpathol2010212 [pii]

    Article  PubMed  CAS  Google Scholar 

  40. Deng G, Peng E, Gum J, Terdiman J, Sleisenger M, Kim YS (2002) Methylation of hMLH1 promoter correlates with the gene silencing with a region-specific manner in colorectal cancer. Br J Cancer 86(4):574–579. doi:10.1038/sj.bjc.6600148

    Article  PubMed  CAS  Google Scholar 

  41. Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25(12):2532–2534, gka376 [pii]

    Article  PubMed  CAS  Google Scholar 

  42. Trinh BN, Long TI, Laird PW (2001) DNA methylation analysis by MethyLight technology. Methods 25(4):456–462

    Article  PubMed  CAS  Google Scholar 

  43. Auclair J, Vaissiere T, Desseigne F, Lasset C, Bonadona V, Giraud S, Saurin JC, Joly MO, Leroux D, Faivre L, Audoynaud C, Montmain G, Ruano E, Herceg Z, Puisieux A, Wang Q (2011) Intensity-dependent constitutional MLH1 promoter methylation leads to early onset of colorectal cancer by affecting both alleles. Genes Chromosomes Cancer 50(3):178–185. doi:10.1002/gcc.20842

    Article  PubMed  CAS  Google Scholar 

  44. Tost J, Gut IG (2006) Analysis of gene-specific DNA methylation patterns by pyrosequencing(r) technology. Methods Mol Biol 373:89–102

    Google Scholar 

  45. Nygren AO, Ameziane N, Duarte HM, Vijzelaar RN, Waisfisz Q, Hess CJ, Schouten JP, Errami A (2005) Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res 33(14):e128. doi:10.1093/nar/gni127, 33/14/e128 [pii]

    Article  PubMed  Google Scholar 

  46. Niessen RC, Hofstra RM, Westers H, Ligtenberg MJ, Kooi K, Jager PO, de Groote ML, Dijkhuizen T, Olderode-Berends MJ, Hollema H, Kleibeuker JH, Sijmons RH (2009) Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome. Genes Chromosomes Cancer 48(8):737–744. doi:10.1002/gcc.20678

    Article  PubMed  CAS  Google Scholar 

  47. Kuiper RP, Vissers LE, Venkatachalam R, Bodmer D, Hoenselaar E, Goossens M, Haufe A, Kamping E, Niessen RC, Hogervorst FB, Gille JJ, Redeker B, Tops CM, van Gijn ME, van den Ouweland AM, Rahner N, Steinke V, Kahl P, Holinski-Feder E, Morak M, Kloor M, Stemmler S, Betz B, Hutter P, Bunyan DJ, Syngal S, Culver JO, Graham T, Chan TL, Nagtegaal ID, van Krieken JH, Schackert HK, Hoogerbrugge N, van Kessel AG, Ligtenberg MJ (2011) Recurrence and variability of germline EPCAM deletions in Lynch syndrome. Hum Mutat 32(4):407–414. doi:10.1002/humu.21446

    Article  PubMed  CAS  Google Scholar 

  48. Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10(8):475–478

    Article  PubMed  CAS  Google Scholar 

  49. Renkonen E, Zhang Y, Lohi H, Salovaara R, Abdel-Rahman WM, Nilbert M, Aittomaki K, Jarvinen HJ, Mecklin JP, Lindblom A, Peltomaki P (2003) Altered expression of MLH1, MSH2, and MSH6 in predisposition to hereditary nonpolyposis colorectal cancer. J Clin Oncol 21(19):3629–3637. doi:10.1200/JCO.2003.03.181, JCO.2003.03.181 [pii]

    Article  PubMed  CAS  Google Scholar 

  50. Raevaara TE, Korhonen MK, Lohi H, Hampel H, Lynch E, Lonnqvist KE, Holinski-Feder E, Sutter C, McKinnon W, Duraisamy S, Gerdes AM, Peltomaki P, Kohonen-Ccorish M, Mangold E, Macrae F, Greenblatt M, de la Chapelle A, Nystrom M (2005) Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129(2):537–549. doi:10.1016/j.gastro.2005.06.005, S0016-5085(05)01103-0 [pii]

    PubMed  CAS  Google Scholar 

  51. Green RC, Green AG, Simms M, Pater A, Robb JD, Green JS (2003) Germline hMLH1 promoter mutation in a Newfoundland HNPCC kindred. Clin Genet 64(3):220–227, 110 [pii]

    Article  PubMed  CAS  Google Scholar 

  52. Muller-Koch Y, Kopp R, Lohse P, Baretton G, Stoetzer A, Aust D, Daum J, Kerker B, Gross M, Dietmeier W, Holinski-Feder E (2001) Sixteen rare sequence variants of the hMLH1 and hMSH2 genes found in a cohort of 254 suspected HNPCC (hereditary non-polyposis colorectal cancer) patients: mutations or polymorphisms? Eur J Med Res 6(11):473–482

    PubMed  CAS  Google Scholar 

  53. Fredriksson H, Ikonen T, Autio V, Matikainen MP, Helin HJ, Tammela TL, Koivisto PA, Schleutker J (2006) Identification of germline MLH1 alterations in familial prostate cancer. Eur J Cancer 42(16):2802–2806. doi:10.1016/j.ejca.2006.04.024, S0959-8049(06)00647-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  54. Lee SC, Guo JY, Lim R, Soo R, Koay E, Salto-Tellez M, Leong A, Goh BC (2005) Clinical and molecular characteristics of hereditary non-polyposis colorectal cancer families in Southeast Asia. Clin Genet 68(2):137–145. doi:10.1111/j.1399-0004.2005.00469.x, CGE469 [pii]

    Article  PubMed  Google Scholar 

  55. Isidro G, Matos S, Goncalves V, Cavaleiro C, Antunes O, Marinho C, Soares J, Boavida MG (2003) Novel MLH1 mutations and a novel MSH2 polymorphism identified by SSCP and DHPLC in Portuguese HNPCC families. Hum Mutat 22(5):419–420. doi:10.1002/humu.9192

    Article  PubMed  CAS  Google Scholar 

  56. Crepin M, Dieu MC, Lejeune S, Escande F, Boidin D, Porchet N, Morin G, Manouvrier S, Mathieu M, Buisine MP (2012) Evidence of constitutional MLH1 epimutation associated to transgenerational inheritance of cancer susceptibility. Hum Mutat 33(1):180–188. doi:10.1002/humu.21617

    Article  PubMed  CAS  Google Scholar 

  57. Vasen HF, Wijnen JT, Menko FH, Kleibeuker JH, Taal BG, Griffioen G, Nagengast FM, Meijers-Heijboer EH, Bertario L, Varesco L, Bisgaard ML, Mohr J, Fodde R, Khan PM (1996) Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 110(4):1020–1027

    Article  PubMed  CAS  Google Scholar 

  58. Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M, Lee TY, Bodmer D, Hoenselaar E, Hendriks-Cornelissen SJ, Tsui WY, Kong CK, Brunner HG, van Kessel AG, Yuen ST, van Krieken JH, Leung SY, Hoogerbrugge N (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet 41(1):112–117

    Article  PubMed  CAS  Google Scholar 

  59. Kovacs ME, Papp J, Szentirmay Z, Otto S, Olah E (2009) Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Hum Mutat 30(2):197–203. doi:10.1002/humu.20942

    Article  PubMed  CAS  Google Scholar 

  60. Guarinos C, Castillejo A, Barbera VM, Perez-Carbonell L, Sanchez-Heras AB, Segura A, Guillen-Ponce C, Martinez-Canto A, Castillejo MI, Egoavil CM, Jover R, Paya A, Alenda C, Soto JL (2010) EPCAM germ line deletions as causes of Lynch syndrome in Spanish patients. J Mol Diagn 12(6):765–770. doi:10.2353/jmoldx.2010.100039, S1525-1578(10)60126-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  61. Nagasaka T, Rhees J, Kloor M, Gebert J, Naomoto Y, Boland CR, Goel A (2010) Somatic hypermethylation of MSH2 is a frequent event in Lynch syndrome colorectal cancers. Cancer Res 70(8):3098–3108. doi:10.1158/0008-5472.CAN-09-3290, 0008-5472.CAN-09-3290 [pii]

    Article  PubMed  CAS  Google Scholar 

  62. Rumilla K, Schowalter KV, Lindor NM, Thomas BC, Mensink KA, Gallinger S, Holter S, Newcomb PA, Potter JD, Jenkins MA, Hopper JL, Long TI, Weisenberger DJ, Haile RW, Casey G, Laird PW, Le Marchand L, Thibodeau SN (2011) Frequency of deletions of EPCAM (TACSTD1) in MSH2-associated Lynch syndrome cases. J Mol Diagn 13(1):93–99. doi:10.1016/j.jmoldx.2010.11.011, S1525-1578(10)00025-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  63. Grandval P, Baert-Desurmont S, Bonnet F, Bronner M, Buisine MP, Colas C, Noguchi T, North MO, Rey JM, Tinat J, Toulas C, Olschwang S (2012) Colon-specific phenotype in Lynch syndrome associated with EPCAM deletion. Clin Genet 82(1):97–99. doi:10.1111/j.1399-0004.2011.01826.x

    Article  PubMed  CAS  Google Scholar 

  64. Kempers MJ, Kuiper RP, Ockeloen CW, Chappuis PO, Hutter P, Rahner N, Schackert HK, Steinke V, Holinski-Feder E, Morak M, Kloor M, Buttner R, Verwiel ET, van Krieken JH, Nagtegaal ID, Goossens M, van der Post RS, Niessen RC, Sijmons RH, Kluijt I, Hogervorst FB, Leter EM, Gille JJ, Aalfs CM, Redeker EJ, Hes FJ, Tops CM, van Nesselrooij BP, van Gijn ME, Gomez Garcia EB, Eccles DM, Bunyan DJ, Syngal S, Stoffel EM, Culver JO, Palomares MR, Graham T, Velsher L, Papp J, Olah E, Chan TL, Leung SY, van Kessel AG, Kiemeney LA, Hoogerbrugge N, Ligtenberg MJ (2011) Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol 12(1):49–55. doi:10.1016/S1470-2045(10)70265-5, S1470-2045(10)70265-5 [pii]

    Article  PubMed  Google Scholar 

  65. Lynch HT, Riegert-Johnson DL, Snyder C, Lynch JF, Hagenkord J, Boland CR, Rhees J, Thibodeau SN, Boardman LA, Davies J, Kuiper RP, Hoogerbrugge N, Ligtenberg MJ (2011) Lynch syndrome-associated extracolonic tumors are rare in two extended families with the same EPCAM deletion. Am J Gastroenterol 106(10):1829–1836. doi:10.1038/ajg.2011.203, ajg2011203 [pii]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan P. Hitchins .

Editor information

Editors and Affiliations

Glossary of Terms

Epigenetics 

The stable changes in gene expression that occur independent of (but can be affected by) changes in the primary DNA sequence [1]. These changes are brought about by the attachment of various biochemical modifications to the DNA sequence, which include DNA methylation, and other chromatin modifications. This chapter will refer only to methylation.

Methylation 

A reversible biochemical modification to the cytosine nucleotide within the DNA sequence, which is universal to vertebrates. Methyl groups can be enzymatically added to or removed from cytosine bases in the genetic code, but occur primarily at cytosine-guanine (CpG) dinucleotides in mammals and are associated with transcriptional silencing of the DNA sequence.

Monoallelic methylation 

Methylation affecting a single allele/copy of a gene, as detected by linking CpG methylation to a single allele of a polymorphism or other genetic variant for which the subject is heterozygous.

Hemiallelic methylation 

Methylation of half of alleles, but not linked to a particular allele eg if the subject is uninformative for a polymorphism such that the two genetic alleles cannot be distinguished.

Epimutation 

An epigenetic aberration that results in a change in the transcriptional state of a gene. This can take the form of transcriptional silencing of a gene that is normally active, or conversely, reactivation of a gene that is normally silent [2].

Primary Epimutation 

An epimutation that has arisen in the absence of any alteration to the DNA sequence in the locality of the epigenetic aberration.

Secondary Epimutation/genetically-facilitated epimutation 

An epimutation that has arisen as a consequence of (or is accompanied by) a genetic alteration on the affected allele.

Germline epimutation 

Origination in, or transmission through, the germline of an epigenetically intact epimutation (with epigenetic modifications remaining attached to the affected DNA sequence) [3].

Constitutional epimutation 

An epigenetic aberration present within normal somatic cells that causes/predisposes to disease, but neither precludes nor dictates that its origin is in the germline, or that it is distributed evenly throughout somatic tissues [4, 5].

Allelic epigenetic mosaicism 

Variation in the epigenetic state (methylation status or levels) of a particular allele within a particular cell type or organism.

Haplotype 

A combination of alleles at multiple loci that are transmitted together on the same chromosome.

De novo 

Spontaneously arising; not inherited from a parent.

Allelic expression imbalance 

Relative loss or reduction in expression of one allele of a gene as compared to the other allele.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hitchins, M.P. (2013). The Role of Epimutations of the Mismatch Repair Genes in the Development of Lynch Syndrome Related Cancers. In: Vogelsang, M. (eds) DNA Alterations in Lynch Syndrome. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6597-9_6

Download citation

Publish with us

Policies and ethics