Functional Analyses Help to Assess the Pathogenicity of MMR Gene Variants of Uncertain Significance

  • Minna NyströmEmail author
  • Minttu Kansikas


Knowing that inherited defects in mismatch repair (MMR) genes predispose to Lynch syndrome (LS), the identification of these mutations in suspected LS families is of prime importance. However, a major problem in the diagnosis and management of LS is the frequent occurrence of variants of uncertain significance (VUS) in the MMR genes. The consequence of a non-truncating mutation can vary from none to complete dysfunction of the protein. Thus, functional assessment by investigating how a non-truncating mutation affects the quantity and biochemical behaviour of the protein variant as compared to the wild-type protein has been shown to be an efficient manner to determine the pathogenicity of MMR gene variations. Furthermore, a stepwise assessment model emphasizing the use of family history and tumour pathological data to guide during the assessment process has been applied. Overall, the model utilizes data from incompletely validated assays supplemented with data derived from other sources such as from in silico analyses to classify VUS for clinical purposes.


Functional analysis Lynch syndrome Mismatch repair Variant of uncertain significance 


  1. 1.
    Järvinen HJ, Aarnio M (2000) Surveillance on mutation carriers of DNA mismatch repair genes. Ann Chir Gynaecol 89:207–210PubMedGoogle Scholar
  2. 2.
    Mecklin JP, Aarnio M, Läärä E, Kairaluoma MV, Pylvänäinen K, Peltomäki P, Aaltonen LA, Järvinen HJ (2007) Development of colorectal tumors in colonoscopic surveillance in Lynch syndrome. Gastroenterology 133:1093–1098. doi: 10.1053/j.gastro.2007-08-019 PubMedCrossRefGoogle Scholar
  3. 3.
    Järvinen HJ, Renkonen-Sinisalo L, Aktán-Collán K, Peltomäki P, Aaltonen LA, Mecklin JP (2009) Ten years after mutation testing for Lynch syndrome: cancer incidence and outcome in mutation-positive and mutation-negativefamily members. J Clin Oncol 27:4793–4797. doi: 10.1200/JCO.2009.23.7784 PubMedCrossRefGoogle Scholar
  4. 4.
    Goldgar DE, Easton DF, Byrnes GB, Spurdle AB, Iversen ES, Greenblatt MS, IARC Unclassified Genetic Variants Working Group (2008) Genetic evidence and integration of various data sources for classifying uncertain variants into a single model. Hum Mutat 29:1265–1272. doi: 10.1002/humu.20897 PubMedCrossRefGoogle Scholar
  5. 5.
    Vasen HF, Mecklin JP, Khan PM, Lynch HT (1991) The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum 34:424–425PubMedCrossRefGoogle Scholar
  6. 6.
    Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116:1453–1456PubMedCrossRefGoogle Scholar
  7. 7.
    Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Rüschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomaki P, Ramsey SD, Rodriguez-Bigas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268. doi: 10.1093/jnci/djh034 PubMedCrossRefGoogle Scholar
  8. 8.
    Genuardi M, Carrara S, Anti M, Ponz de Leòn M, Viel A (1999) Assessment of pathogenicity criteria for constitutional missense mutations of the hereditary nonpolyposis colorectal cancer genes MLH1 and MSH2. Eur J Hum Genet 7:778–782. doi: 10.1038/sj.ejhg.5200363 PubMedCrossRefGoogle Scholar
  9. 9.
    Barnetson RA, Cartwright N, van Vliet A, Haq N, Drew K, Farrington S, Williams N, Warner J, Campbell H, Porteous ME, Dunlop MG (2008) Classification of ambiguous mutations in DNA mismatch repair genes identified in a population-based study of colorectal cancer. Hum Mutat 29:367–374. doi: 10.1002/humu.20635 PubMedCrossRefGoogle Scholar
  10. 10.
    Shimodaira H, Filosi N, Shibata H, Suzuki T, Radice P, Kanamaru R, Friend SH, Kolodner RD, Ishioka C (1998) Functional analysis of human MLH1 mutations in Saccharomyces cerevisiae. Nat Genet 19:384–389. doi: 10.1038/1277 PubMedCrossRefGoogle Scholar
  11. 11.
    Clark AB, Cook ME, Tran HT, Gordenin DA, Resnick MA, Kunkel TA (1999) Functional analysis of human MutSalpha and MutSbeta complexes in yeast. Nucleic Acids Res 27:736–742. doi: 10.1093/nar/27.3.736 PubMedCrossRefGoogle Scholar
  12. 12.
    Drotschmann K, Clark AB, Tran HT, Resnick MA, Gordenin DA, Kunkel TA (1999) Mutator phenotypes of yeast strains heterozygous for mutations in the MSH2 gene. Proc Natl Acad Sci U S A 96:2970–2975. doi: 10.1073/pnas.96.6.2970 PubMedCrossRefGoogle Scholar
  13. 13.
    Shcherbakova PV, Kunkel TA (1999) Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations. Mol Cell Biol 19:3177–3183PubMedGoogle Scholar
  14. 14.
    Vogelsang M, Comino A, Zupanec N, Hudler P, Komel R (2009) Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast. BMC Cancer 9:382. doi: 10.1186/1471-2407-9-382 PubMedCrossRefGoogle Scholar
  15. 15.
    Ellison AR, Lofting J, Bitter GA (2001) Functional analysis of human MLH1 and MSH2 missense variants and hybrid human-yeast MLH1 proteins in Saccharomyces cerevisiae. Hum Mol Genet 10:1889–1900. doi: 10.1093/hmg/10.18.1889 PubMedCrossRefGoogle Scholar
  16. 16.
    Ellison AR, Lofting J, Bitter GA (2004) Human Mutl homolog (MLH1) function in DNA mismatch repair: a prospective screen for missense mutations in the ATPase domain. Nucleic Acids Res 32:5321–5338. doi: 10.1093/nar/gkh855 PubMedCrossRefGoogle Scholar
  17. 17.
    Nyström-Lahti M, Perrera C, Räschle M, Panyushkina-Seiler E, Marra G, Curci A, Quaresima B, Costanzo F, D’Urso M, Venuta S, Jiricny J (2002) Functional analysis of MLH1 mutations linked to hereditary nonpolyposis colon cancer. Genes Chromosomes Cancer 33:160–167. doi: 10.1002/gcc.1225 PubMedCrossRefGoogle Scholar
  18. 18.
    Trojan J, Zeuzem S, Randolph A, Hemmerle C, Brieger A, Raedle J, Plotz G, Jiricny J, Marra G (2002) Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. Gastroenterology 122:211–219. doi: 10.1053/gast.2002.30296 PubMedCrossRefGoogle Scholar
  19. 19.
    Lahue RS, Au KG, Modrich P (1989) DNA mismatch correction in a defined system. Science 245:160–164. doi: 10.1126/science.2665076 PubMedCrossRefGoogle Scholar
  20. 20.
    Drost M, Zonneveld JB, van Dijk L, Morreau H, Tops CM, Vasen HF, Wijnen JT, de Wind N (2010) A cell-free assay for the functional analysis of variants of the mismatch repair protein MLH1. Hum Mutat 31:247–253. doi: 10.1002/humu.21180 PubMedCrossRefGoogle Scholar
  21. 21.
    Thomas DC, Roberts JD, Kunkel TA (1991) Heteroduplex repair in extracts of human HeLa cells. J Biol Chem 266:3744–3751PubMedGoogle Scholar
  22. 22.
    Raevaara TE, Korhonen MK, Lohi H, Hampel H, Lynch E, Lönnqvist KE, Holinski-Feder E, Sutter C, McKinnon W, Duraisamy S, Gerdes AM, Peltomäki P, Kohonen-Ccorish M, Mangold E, Macrae F, Greenblatt M, de la Chapelle A, Nyström M (2005) Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129:537–549. doi: 10.1016/j.gastro.2005.06.005 PubMedGoogle Scholar
  23. 23.
    Korhonen MK, Vuorenmaa E, Nystrom M (2008) The first functional study of MLH3 mutations found in cancer patients. Genes Chromosomes Cancer 47:803–809. doi: 10.1002/gcc.20581 PubMedCrossRefGoogle Scholar
  24. 24.
    Drost M, Zonneveld JB, van Hees S, Rasmussen LJ, Hofstra RM, de Wind N (2012) A rapid and cell-free assay to test the activity of Lynch syndrome-associated MSH2 and MSH6 missense variants. Hum Mutat 33:488–494. doi: 10.1002/humu.22000 PubMedCrossRefGoogle Scholar
  25. 25.
    Kantelinen J, Kansikas M, Candelin S, Hampel H, Smith B, Holm L, Kariola R, Nyström M (2012) Mismatch repair analysis of inherited MSH2 and/or MSH6 variation pairs found in cancer patients. Hum Mutat 33:1294–1301. doi: 10.1002/humu.22119 PubMedCrossRefGoogle Scholar
  26. 26.
    Kantelinen J, Kansikas M, Korhonen MK, Ollila S, Heinimann K, Kariola R, Nyström M (2010) MutSbeta exceeds MutSalpha in dinucleotide loop repair. Br J Cancer 102:1068–1073. doi: 10.1038/sj.bjc.6605531 PubMedCrossRefGoogle Scholar
  27. 27.
    Takahashi M, Shimodaira H, Andreutti-Zaugg C, Iggo R, Kolodner RD, Ishioka C (2007) Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 67:4595–4604. doi: 10.1158/0008-5472 PubMedCrossRefGoogle Scholar
  28. 28.
    Mastrocola AS, Heinen CD (2010) Lynch syndrome-associated mutations in MSH2 alter DNA repair and checkpoint response functions in vivo. Hum Mutat 31:1699–1708. doi: 10.1002/humu.21333 CrossRefGoogle Scholar
  29. 29.
    Ollila S, Sarantaus L, Kariola R, Chan P, Hampel H, Holinski-Feder E, Macrae F, Kohonen-­Corish M, Gerdes AM, Peltomäki P, Mangold E, de la Chapelle A, Greenblatt M, Nyström M (2006) Pathogenicity of MSH2 missense mutations is typically associated with impaired repair capability of the mutated protein. Gastroenterology 131:1408–1417. doi: 10.1053/j.gastro.2006.08.044 PubMedCrossRefGoogle Scholar
  30. 30.
    Gammie AE, Erdeniz N, Beaver J, Devlin B, Nanji A, Rose MD (2007) Functional characterization of pathogenic human MSH2 missense mutations in Saccharomyces cerevisiae. Genetics 177:707–721. doi: 10.1534/genetics.107.071084 PubMedCrossRefGoogle Scholar
  31. 31.
    Guerrette S, Acharya S, Fishel R (1999) The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem 274:6336–6341. doi: 10.1074/jbc.274.10.6336 PubMedCrossRefGoogle Scholar
  32. 32.
    Kondo E, Suzuki H, Horii A, Fukushige S (2003) A yeast two-hybrid assay provides a simple way to evaluate the vast majority of hMLH1 germ-line mutations. Cancer Res 63:3302–3308PubMedGoogle Scholar
  33. 33.
    Jäger AC, Rasmussen M, Bisgaard HC, Singh KK, Nielsen FC, Rasmussen LJ (2001) HNPCC mutations in the human DNA mismatch repair gene hMLH1 influence assembly of hMutLalpha and hMLH1-hEXO1 complexes. Oncogene 20:3590–3595. doi: 10.1038/sj.onc.1204467 PubMedCrossRefGoogle Scholar
  34. 34.
    Andersen SD, Liberti SE, Lützen A, Drost M, Bernstein I, Nilbert M, Dominguez M, Nyström M, Hansen TV, Christoffersen JW, Jäger AC, de Wind N, Nielsen FC, Tørring PM, Rasmussen LJ (2012) Functional characterization of MLH1 missense variants identified in Lynch syndrome patients. Hum Mutat 33:1647–1655. doi: 10.1002/humu.22153 PubMedCrossRefGoogle Scholar
  35. 35.
    Guerrette S, Wilson T, Gradia S, Fishel R (1998) Interactions of Human hMSH2 with hMSH3 and hMSH2 with hMSH6: examination of mutations found in hereditary nonpolyposis colorectal cancer. Mol Cell Biol 18:6616–6623PubMedGoogle Scholar
  36. 36.
    Kariola R, Raevaara TE, Lönnqvist KE, Nyström-Lahti M (2002) Functional analysis of MSH6 mutations linked to kindreds with putative hereditary non-polyposis colorectal cancer syndrome. Hum Mol Genet 11:1303–1310. doi: 10.1093/hmg/11.11.1303 PubMedCrossRefGoogle Scholar
  37. 37.
    Kariola R, Hampel H, Frankel WL, Raevaara TE, de la Chapelle A, Nyström-Lahti M (2004) MSH6 missense mutations are often associated with no or low cancer susceptibility. Br J Cancer 91:1287–1292. doi: 10.1038/sj.bjc.6602129 PubMedCrossRefGoogle Scholar
  38. 38.
    James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436PubMedGoogle Scholar
  39. 39.
    Korhonen MK, Raevaara TE, Lohi H, Nystrom M (2007) Conditional nuclear localization of hMLH3 suggests a minor activity in mismatch repair and supports its role as a low-risk gene in HNPCC. Oncol Rep 17:351–354PubMedGoogle Scholar
  40. 40.
    Lützen A, de Wind N, Georgijevic D, Nielsen FC, Rasmussen LJ (2008) Functional analysis of HNPCC-related missense mutations in MSH2. Mutat Res 645:44–55. doi: 10.1016/j.mrfmmm.2008.08.015 PubMedCrossRefGoogle Scholar
  41. 41.
    Heinen CD, Wilson T, Mazurek A, Berardini M, Butz C, Fishel R (2002) HNPCC mutations in hMSH2 result in reduced hMSH2-hMSH6 molecular switch functions. Cancer Cell 1:469–478. doi: 10.1016/j.bbr.2011.03.031 PubMedCrossRefGoogle Scholar
  42. 42.
    Ollila S, Dermadi Bebek D, Jiricny J, Nyström M (2008) Mechanisms of pathogenicity in human MSH2 missense mutants. Hum Mutat 29:1355–1363. doi: 10.1002/humu.20893 PubMedCrossRefGoogle Scholar
  43. 43.
    Plon SE, Eccles DM, Easton D, Foulkes WD, Genuardi M, Greenblatt MS, Hogervorst FBL, Hoogerbrugge N, Spurdle AB, Tavtigian SV, IARC Unclassified Genetic Variants Working Group (2008) Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29:1282–1291. doi: 10.1002/humu.20880 PubMedCrossRefGoogle Scholar
  44. 44.
    Tavtigian SJ, Greenblatt MS, Lesueur F, Byrnes GB (2008) In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 29:1327–1336. doi: 10.1002/humu.20892 PubMedCrossRefGoogle Scholar
  45. 45.
    Arnold S, Buchanan DD, Barker M, Jaskowski L, Walsh MD, Birney G, Woods MO, Hopper JL, Jenkins MA, Brown MA, Tavtigian SV, Goldgar DE, Young JP, Spurdle AB (2009) Classifying MLH1 and MSH2 variants using bioinformatic prediction, splicing assays, segregation, and tumor characteristics. Hum Mutat 30:757–770. doi: 10.1002/humu.20936 PubMedCrossRefGoogle Scholar
  46. 46.
    Spurdle AB (2010) Clinical relevance of rare germline sequence variants in cancer genes: evolution and application of classification models. Curr Opin Genet Dev 20:315–323. doi: 10.1016/j.gde.2010.03.009 PubMedCrossRefGoogle Scholar
  47. 47.
    Deschênes SM, Tomer G, Nguyen M, Erdeniz N, Juba NC, Sepúlveda N, Pisani JE, Liskay RM (2007) The E705K mutation in hPMS2 exerts recessive, not dominant, effects on mismatch repair. Cancer Lett 249:148–156. doi: 10.1016/j.canlet.2006.08.008 PubMedCrossRefGoogle Scholar
  48. 48.
    Kansikas M, Kariola R, Nyström M (2011) Verification of the three-step model in assessing the pathogenicity of mismatch repair gene variants. Hum Mutat 32:107–115. doi: 10.1002/humu.21409 PubMedCrossRefGoogle Scholar
  49. 49.
    Couch FJ, Rasmussen LJ, Hofstra R, Monteiro ANA, Greenblatt MS, de Wind N, IARC Unclassified Variants Working Group (2008) Assessment of functional effects of unclassified genetic variants. Hum Mutat 29:1314–1326. doi: 10.1002/humu.20899 PubMedCrossRefGoogle Scholar
  50. 50.
    Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Nakagawa H, Sotamaa K, Prior TW, Westman J, Panescu J, Fix D, Lockman J, Comeras I, de la Chapelle A (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352:1851–1860. doi: 10.1056/NEJMoa043146 PubMedCrossRefGoogle Scholar
  51. 51.
    Mangold E, Pagenstecher C, Friedl W, Fischer HP, Merkelbach-Bruse S, Ohlendorf M, Friedrichs N, Aretz S, Buettner R, Propping P, Mathiak M (2005) Tumours from MSH2 mutation carriers show loss of MSH2 expression but many tumours from MLH1 mutation carriers exhibit weak positive MLH1 staining. J Pathol 207:385–395. doi: 10.1002/path.1858 PubMedCrossRefGoogle Scholar
  52. 52.
    Chang DK, Ricciardiello L, Goel A, Chang CL, Boland CR (2000) Steady-state regulation of the human DNA mismatch repair system. J Biol Chem 275:18424–18431. doi: 10.1074/jbc.M001140200 PubMedCrossRefGoogle Scholar
  53. 53.
    Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M, Lee TY, Bodmer D, Hoenselaar E, Hendriks-Cornelissen SJ, Tsui WY, Kong CK, Brunner HG, van Kessel AG, Yuen ST, van Krieken JH, Leung SY, Hoogerbrugge N (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet 41:112–117. doi: 10.1038/ng.283 PubMedCrossRefGoogle Scholar
  54. 54.
    Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM, Kolodner R (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57:808–811PubMedGoogle Scholar
  55. 55.
    Domingo E, Niessen RC, Oliveira C, Alhopuro P, Moutinho C, Espín E, Armengol M, Sijmons RH, Kleibeuker JH, Seruca R, Aaltonen LA, Imai K, Yamamoto H, Schwartz S Jr, Hofstra RM (2005) BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene 24:3995–3998PubMedCrossRefGoogle Scholar
  56. 56.
    Hendriks YMC, Wagner A, Morreau H, Menko F, Stormorken A, Quehenberger F, Sandkuijl L, Møller P, Genuardi M, Van Houwelingen H, Tops C, Van Puijenbroek M, Verkuijlen P, Kenter G, Van Mil A, Meijers-Heijboer H, Tan GB, Breuning MH, Fodde R, Winjen JT, Bröcker-Vriends AHJT, Vasen H (2004) Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 127:17–25. doi: 10.1016/j.bbr.2011.03.031 PubMedCrossRefGoogle Scholar
  57. 57.
    Chan PA, Duraisamy S, Miller PJ, Newell JA, McBride C, Bond JP, Raevaara T, Ollila S, Nyström M, Grimm AJ, Christodoulou J, Oetting WS, Greenblatt MS (2007) Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Hum Mutat 28:683–693. doi: 10.1002/humu.20492 PubMedCrossRefGoogle Scholar
  58. 58.
    Ali H, Olatubosun A, Vihinen M (2012) Classification of mismatch repair gene missense variants with PON-MMR. Hum Mutat 33:642–650. doi: 10.1002/humu.22038 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biosciences, GeneticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations