Advertisement

Apitherapy – Bee Venom Therapy

  • Christopher M. H. Kim
Chapter

Abstract

Bee Venom Therapy (BVT) is a bio-therapeutic medical treatment that utilizes the venom of the honeybee for the treatment of diseases.

Physicians dating back to Hippocrates used honeybee venom (HBV) to treat a variety of illnesses. Today, physicians are still using HBV to treat patients worldwide. Clinical trials and rigorous testing under certified licensed physicians have proven that HBV is an effective treatment modality. The benefits of this drug have proven to be remarkable all over the world from Russia to the United States.

The proponents of bee venom are extensive. In the case of chronic pain disorders such as rheumatism and arthritis, bee venom is used to combat inflammation and the degeneration of connective tissue. Neurological disorders such as migraine, peripheral neuritis and chronic back pain have also been treated successfully. In the case of autoimmune disorders such as multiple sclerosis and lupus, it restores movement and mobility by strengthening the body’s natural defense mechanism. In addition, dermatological conditions such as eczema, psoriasis, herpes can be effectively treated. Most recently, bee venom is being investigated for treatment of cancerous tumors as well.

Keywords

Multiple Sclerosis Intradermal Injection Plasma Cortisol Level Royal Jelly Atherogenic Diet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Banks BE, Rumjanek FD, Sinclair NM, Vernon CA (1976) Possible therapeutic use of a peptide from bee venom. Bull Pasteur Inst 74:137–144Google Scholar
  2. Banks BE, Dempsey CE, Vernon CA, Warner JA, Yamey J (1990) Anti-inflammatory activity of bee venom peptide 401 (mast cell degranulating peptide) and compound 48/80 results from mast cell degranulation in vivo. Br J Pharmacol 99:350–354PubMedCrossRefGoogle Scholar
  3. Barker SA, Bayyuk SH, Brimacombe JS, Hawkins CF, Stacey M (1964) The structure of the hyaluronic acid compound of synovial fluid in rheumatoid arthritis. Clin Chim Acta 9:339–343PubMedCrossRefGoogle Scholar
  4. Belliveau J (1992) The effectiveness of bee venom on adjuvant induced colon cancer of the rats. Second American Apitherapy Society conference, BostonGoogle Scholar
  5. Castro HJ, Mendez-Inocencio JI, Omidvar B, Omidvar J, Santilli J, Nielsen HS, Pavot AP, Richert JR, Bellanti JA (2005) A phase I study of the safety of honeybee venom extract as a possible treatment for patients with progressive forms of multiple sclerosis. Allergy Asthma Proc 26(6):470–476PubMedGoogle Scholar
  6. Chang YH, Bliven ML (1979) Anti-arthritic effect of bee venom. Agents Actions 9:205–211PubMedCrossRefGoogle Scholar
  7. Clapp LE, Klette KL, Ma DC, Bernton E, Petras JM, Dave JR, Laskosky MS, Smallridge RC, Tortella FC (1995) Phospholipid A2-induced neurotoxicity in vitro and in vivo in rats. Brain Res 693:101–111PubMedCrossRefGoogle Scholar
  8. Defendini M, Ayeb M, Regnier VA, Pierres M (1988) H-2A-linked control of T cell and antibody response to bee venom. Immunogenetics 28(2):139–141PubMedCrossRefGoogle Scholar
  9. Dorman LC, Markey LD (1971) Solid phase synthesis and antibacterial activity of N-terminal sequences of melittin. J Med Chem 14:5–9PubMedCrossRefGoogle Scholar
  10. Dufourcq J (1986) Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochim Biophys Acta 859(1):33–48PubMedCrossRefGoogle Scholar
  11. Edstrom A, Briggman M, Ekstrom PA (1996) Phospholipase A2 activity is required for regeneration of sensory axons in cultured adult sciatic nerves. J Neurosci Res 43:183–189PubMedCrossRefGoogle Scholar
  12. Eiseman JL, von Bredow J, Alvares AP (1982) Effect of honeybee (Apis mellifera) venom on the course of adjuvant-induced arthritis and depression of drug metabolism in the rat. Biochem Pharmacol 31(6):1139–1146PubMedCrossRefGoogle Scholar
  13. Feldsher AS, Solodovnikox GI, Gorobets GN (1981) Bee venom treatment of lumbosacral radiculitis. Feldsher Akush (USSR) 46(4):55–57Google Scholar
  14. Fennell JF, Shipman WH, Cole LJ (1968) Antibacterial action of melittin, a polypeptide from bee venom. Proc Soc Exp Biol Med 127:707–710PubMedGoogle Scholar
  15. Forestier F, Palmer M (1983) Apitherapy; rheumatology: 1600 cases investigated thoroughly. Fr Rev Apic 421:1–10Google Scholar
  16. Forster KA (1950) Forty years of experience with bee venom therapy. Che MedGoogle Scholar
  17. Gandolfo G, Gottesmann C, Binnard JN, Lazdunski M (1989) K+ channels openers prevent epilepsy induced by the bee venom peptide MCD. Eur J Pharmacol 159:329–330PubMedCrossRefGoogle Scholar
  18. Gencheva G, Shkenderov S (1986) Inhibition of complement activity by certain bee venom components. Acad Bulg Sci 39(9):137–139Google Scholar
  19. Ginsberg NJ, Dauer M, Slotta KH (1968) Melittin used as a protective agent against X-irradiation. Nature 220:1334PubMedCrossRefGoogle Scholar
  20. Guju Pharma, Apimeds (2003) Final report filed to KFDAGoogle Scholar
  21. Guju Pharma, Apimeds (2009) PMS report filed to KFDAGoogle Scholar
  22. Habermann E, Cheng-Raude D (1975) Central neurotoxicity of apamin, crotamin, phospholipase A2 and alpha-amanitin. Toxicon 13:465–467PubMedCrossRefGoogle Scholar
  23. Habermehl GG (1981) Venomous animals and their toxins. Springer, New YorkCrossRefGoogle Scholar
  24. Hadjipetrou-Kourounakis L, Yiangou M (1984) Bee venom and adjuvant induced disease. J Rheumatol 1(5):720Google Scholar
  25. Hadjipetrou-Kourounakis L, Yiangou M (1988) Bee venom, adjuvant induced disease and interleukin production. J Rheumatol 15:1126–1128PubMedGoogle Scholar
  26. Han SM, Lee KG, Yeo JH, Jweon HY, Kim BS, Kim JM, Baek HJ, Kim ST (2007) Antibacterial activity of the honeybee venom against bacterial mastitis pathogens infecting daily cows. Int J Ind Entomol 14(2):137–142Google Scholar
  27. Hanson JM, Morley J, Soria-Herrera C (1974) Anti-inflammatory property of 401 (MCD-peptide), a peptide from the venom of the bee Apis mellifera (L). Br J Pharmacol 50:383–392PubMedCrossRefGoogle Scholar
  28. Hartman DA, Tomchek LA, Lugay JR, Lewin AC, Chau TT, Carlson RP (1991) Comparison of anti-inflammatory and anti-allergenic drugs in the melittin- and D49 PLA2-induced mouse paw edema models. Agents Actions 34:84–88PubMedCrossRefGoogle Scholar
  29. Hauser RA, Daguio M, Wester DE, Hauser M, Kirchman A, Skinkis C (2001) Bee venom therapy for treating multiple sclerosis: a clinical trial. Altern Complement Ther 7(1):37–45CrossRefGoogle Scholar
  30. Hu H, Chen D, Zhang X (2006a) Effect of polypeptides in bee venom on growth inhibition and apoptosis induction of the human hepatoma cell line SMMC-7721 in vitro and Balb/c nude mice in vivo. J Pharm Pharmacol 58:83–89PubMedCrossRefGoogle Scholar
  31. Hu H, Chen D, Liu Y, Yang S, Qiao M, Zhao J, Zhao X (2006b) Target ability and therapy efficacy of immune liposomes using a humanized antihepatoma disulfide-stabilized Fv fragment on tumor cells. J Pharm Sci 95:192–199PubMedCrossRefGoogle Scholar
  32. Hugues M, Romey G, Duval D, Vincent JP, Lazdunski M (1982a) Apamin as a selective blocker of calcium dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci 79:1308–1312PubMedCrossRefGoogle Scholar
  33. Hugues M, Duval D, Kitabgi P, Lazdunski M, Vincent JP (1982b) Preparation of pure monoiodo derivative of bee venom neurotoxin apamin and its binding properties to rat brain synaptosomes. J Biol Chem 257:2762–2769PubMedGoogle Scholar
  34. Hurkov S (1971) Electrophoresis of the bee venom preparation Melivenon in the treatment of osteoarthritis. Kurort Fizioter 8(3):128–131Google Scholar
  35. Hyre HM, Smith RA (1986) Immunological effects of honeybee venom using balb/c mice. Toxicon 24(5):435–440PubMedCrossRefGoogle Scholar
  36. Ip SW, Chu YL, Chen PY, Ho HC, Yang JS, Huang HY, Chueh FS, Lai TY, Chung JG (2012) Bee venom induces apoptosis through intracellular Ca++− modulated intrinsic death pathway in human bladder cancer cells. Int J Urol 19(1):61–70PubMedCrossRefGoogle Scholar
  37. Jang MH, Shin MC, Lim S, Han SM, Park HJ, Shin I, Lee JS, Kim KA, Kim EH, Kim CJ (2003) Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer line NCI-H1299. J Pharmacol Sci 91(2):95–104PubMedCrossRefGoogle Scholar
  38. Jasani B, Kreil G, Mackler BF, Stanworth DR (1979) Further studies on the structural requirements for polypeptide mediated histamine release from rat mast cells. Biochem J 181:623–632PubMedGoogle Scholar
  39. Jo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, Kim HJ, Song MJ, Hong JT (2012) Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK/2/STAT3 pathway. Toxicol Appl Pharmacol 258(1):72–81PubMedCrossRefGoogle Scholar
  40. Jones HP, Chai G, Petrone WF (1982) Calmodulin dependent stimulation of the NADPH oxidase of human neutrophils. Biochim Biophys Acta 714:152–156PubMedCrossRefGoogle Scholar
  41. Kang JK, Kim CMH (1993) Toxicity test of apitoxin (14 p). Phase I study, Final Report to KFDAGoogle Scholar
  42. Kang SS, Pak SC, Choi SH (2002) The effect of whole bee venom on arthritis. Am J Chin Med 30(1):73–80PubMedCrossRefGoogle Scholar
  43. Kanno I, Ito Y, Okuyama S (1970) Radioprotection by bee venom. J Jpn Med Radiat 29:30Google Scholar
  44. Kim CMH (1986) Bee venom therapy. Manag Stress Pain 1(4):1–6Google Scholar
  45. Kim CMH (1987) The final report of the safety and toxicity of Apitox. Phase I clinical trial, FDAGoogle Scholar
  46. Kim CMH (1989) Bee venom therapy for arthritis. Rheumatologie 41:67–72Google Scholar
  47. Kim CMH (1991) Honey bee venom therapy for arthritis (RA, OA), fibromyositis (FM) and pheripheral neuritis (PN). J Korean Pain Res 1(1):55–65Google Scholar
  48. Kim CMH (1992) Bee venom therapy and bee acupuncture therapy. Korean Ed Publishing, Seoul, 515 ppGoogle Scholar
  49. Kim CMH (1997) Potentiating health and the crisis of the immune system. Chapter 24; apitherapy (Bee Venom Therapy) literature review. Plenum Press, New York, pp 243–270Google Scholar
  50. Kim CMH (2009) Report to FDA, and update of the DMF BB13, 130Google Scholar
  51. Kim CMH (2011) Personal communication with American Apitherapy SocietyGoogle Scholar
  52. Kim CMH (2012) Stability test: 3 years follow up (92 p). Report to FDA – Phase III clinical trialGoogle Scholar
  53. Kim KS, Choi US, Lee SD, Kim KH, Chung KH, Chang YC, Park KK, Lee YC, Kim CH (2005) Effects of bee venom on aromatase expression and activity in leukemic FLG 29.1 and primary osteoblastic cells. J Ethanol pharmacol 99(2):245–252Google Scholar
  54. Kim DH, Kim CMH, Jun HK, Park SK, Hsu CY, Hsu CL, Liao JC, Chueh HJ, Cheng HW (2007a) Treatment by injection-acupuncture with Apitox combined by Chinese herbal medicine in patients with canine hind limb paralysis. J Vet Clin 24(2):225–228Google Scholar
  55. Kim DH, Kim CMH, Oh JW, Lee HH, Jeong SM, Choi SH (2007b) Therapeutic effect of bee venom and dexamethasone in dogs with facial nerve paralysis. J Vet Clin 24(4):503–508Google Scholar
  56. Kim SJ, Park JH, Kim KH, Lee WR, Kim KS, Park KK (2011) Melittin inhibits atherosclerosis in LPS/high-fat treated mice through atheroprotective actions. J Atheroscler Thromb 18(12):1117–1126PubMedCrossRefGoogle Scholar
  57. Klinghardt D (1990) Bee venom therapy for chronic pain. J Neuro Ortho Med Surg 11(3):195–197Google Scholar
  58. Knepel W, Gerhards C (1987) Stimulation by melittin of adrenocorticotrophin and beta-endophin release from rat adenohypophysis in vitro. Prostaglandins 33(3):479–490PubMedGoogle Scholar
  59. Koburova KL, Michailova SG, Shkenderov SV (1984) Antipyretic effect of polypeptide from bee venom – adolapin. Eksp Med Morfol 23:143–148PubMedGoogle Scholar
  60. Koburova KL, Michailova SG, Shkenderov SV (1985) Further investigation on the antiinflammatory properties of adolapin – bee venom polypeptide. Acta Physiol Pharmacol Bulg 2(2):50–55Google Scholar
  61. Koumanov K, Momchilova A, Wolf C (2003) Bimodal regulatory effect of melittin and phospholipase A2 activating protein on human type II secretory phospholipase A2. Cell Biol Int 27:871–877PubMedCrossRefGoogle Scholar
  62. Kwon YB, Lee JD, Lee HJ, Mar WC, Kang SK, Beitz AJ, Lee JH (2001a) Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses. Pain 90(3):271–280PubMedCrossRefGoogle Scholar
  63. Kwon YB, Kim JH, Yoon JH, Lee JD, Han HJ, Mar WC, Beitz AJ, Lee JH (2001b) The analgesic efficacy of bee venom acupuncture for knee osteoarthritis: a comparison study with needle acupuncture. Am J Chin Med 29(2):187–199PubMedCrossRefGoogle Scholar
  64. Landucci EC, Toyama M, Marangoni S, Oliveira B, Cirino G, Antunes E, de Nucci G (2000) Effect of crotapotin and heparin on the rat raw edema induced by different secretory phospholipase A2. Toxicon 38:199–208PubMedCrossRefGoogle Scholar
  65. Langer J (1897) Uber das Gift Unserer Honigbiene. ALeipz 38:381–396Google Scholar
  66. Lee JH, Kwon YB, Han HJ, Mar WC, Lee HJ, Yang IS, Beitz AJ, Kang SK (2001) Bee venom pretreatment has both an antinociceptive and antieffect on Carrageenan inflammation. J Vet Med Sci 63(3):251–259PubMedCrossRefGoogle Scholar
  67. Lee WR, Kim SJ, Park JH, Kim KH, Chang YC, Park YY, Lee KG, Han SM, Yeo JH, Park KK (2010) Bee venom reduces atherosclerotic lesion formation via anti-inflammatory mechanism. Am J Chin Med 38(6):1077–1092PubMedCrossRefGoogle Scholar
  68. Liu S, Yu M, Xiao L, Wang F, Song C, Sun S, Ling C, Xu Z (2008) Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology 47:1964–1973PubMedCrossRefGoogle Scholar
  69. Lonauer G, Meyers A, Kastner D, Kalveram K, Forck G, Gerlach U (1985) Treatment of rheumatoid arthritis with a new purified bee venom. Abstract, XXX ApomondiaGoogle Scholar
  70. Lorenzetti OJ, Fortenberry B, Busby E (1972) The influence of bee venom in the adjuvant induced arthritic rat model. Res Commun Chem Pathol Pharmacol 4(2):339–352PubMedGoogle Scholar
  71. Lubke LL, Garon CF (1997) The antimicrobial agent melittin exhibits powerful in vitro inhibitory effects on the Lyme disease spirochete. Clin Infect Dis 25(Suppl 1):S48–S51PubMedCrossRefGoogle Scholar
  72. Meier J, White J (1995) Handbook of clinical toxicology of animal venoms. CRC Press, New YorkGoogle Scholar
  73. Menander-Huber J (1980) Melittin bound to calmodulin. NMR assignments and global conformation features. Exp Biochem 112:236Google Scholar
  74. Minton SA (1974) Venom disease. Charles C Thomas, SpringfieldGoogle Scholar
  75. Mund-Hoym WD (1982) A report of the results of treating a total of 211 patients with bee venom. Med World 33(34):1174–1177Google Scholar
  76. Neumann W, Habermann E, Amend G (1952) Zur Papierelektrophoretischen Fraktionierung Tierischer Gifte. Naturwissenschaften 39:286–287CrossRefGoogle Scholar
  77. NIH (1995) Apitherapy, alternative medicine: expanding medical horizons, NIH Pub., Bethesda, pp 172–175Google Scholar
  78. NIH (2010) ClinicalTrials.gov Identifier, NCT01112722Google Scholar
  79. Nokolova V (1973) A study of the therapeutic value of electrophoresis with bee venom in children with rheumatoid arthritis. Probl Pediatr 16:101–106Google Scholar
  80. O’Connor R, Peck ML (1978) Venoms of apidae. Arthropod venoms. Springer, New York, pp 613–659Google Scholar
  81. Orsolic N (2012) Bee venom in cancer therapy. Cancer Metastasis Rev 31(1–2):173–194PubMedCrossRefGoogle Scholar
  82. Orsolic N, Sver L, Versovsek S, Terzic S (2003) Inhibition of mammary carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. Toxicon 41:861–870PubMedCrossRefGoogle Scholar
  83. Park HJ, Lee SH, Son DJ, Oh KW, Kim KH, Song SH, Kim GJ, Oh GT, Yoon DY, Hong JT (2004) Antiarthritic effect of bee venom: inhibition of inflammation mediator generation by suppression of NF-kappaB through interaction with the p50 subunit. Arthritis Rheum 50(11):3504–3515PubMedCrossRefGoogle Scholar
  84. Putz T, Ramoner R, Gander H, Rham A, Bartsch G, Thurnher M (2006) Antitumor action and immune activation through cooperation of bee venom secretory phospholipase A2 and phosphotidylinositol-(3, 4)-bis-phosphate. Cancer Immunol Immunother 55:1374–1383PubMedCrossRefGoogle Scholar
  85. Rauen HM, Schriewer H, Ferie F (1972) Alkylans alkylandum reactons. 10. Antialkylating activity of bee venom, melittin, and apamin. Arzneim-Forsch 22:1921Google Scholar
  86. Rekka E, Kourounakis L, Kourounakis P (1990) Antioxidant activity of and interleukin production affected by honey bee venom. Arzneimittel Forschung – Drug Res 40:912–913Google Scholar
  87. Schmidt-Lange W (1941) The germicidal effect of bee venom. Muench Med Wochenschr 83:935Google Scholar
  88. Serban E (1981) Bee venom and rheumatism. Fr Rev Apitherapy, p 399Google Scholar
  89. Shipman WH (1967) Increased resistance of mice to X-irradiation after the injection of bee venom. Nature 215:311–312PubMedCrossRefGoogle Scholar
  90. Shipman WH, Cole LJ (1968) Increased radiation resistance of mice injected with bee venom one day prior to exposure. Report USNRDL-TR-67-4, US Naval Radiological Defense Lab, San Francisco, pp 1–10Google Scholar
  91. Shipolini RA (1984) Biochemistry of bee venom. Arthropod venoms, vol 48, Handbook of experimental pharmacology. Springer, New York, pp 49–85Google Scholar
  92. Shkenderov S (1986) Anti-inflammatory effect of bee venom protease inhibitor on a model system of acute inflammatory edema. Comptes rendus de l'Academie bulgare des Sciences 39:151–154Google Scholar
  93. Shkenderov S, Koburova K (1982) Adolapin – a newly isolated analgesic and anti-inflammatory polypeptide from bee venom. Toxicon 20:317–321PubMedCrossRefGoogle Scholar
  94. Short T, Jackson R, Beard G (1979) Usefulness of bee venom therapy in canine arthritis. NAAS Proc 2:13–17Google Scholar
  95. Somerfield SD, Stach JL, Mraz C, Gervais F, Skamene E (1986) Bee venom melittin blocks neutrophil O2-production. Inflammation 10:175–182PubMedCrossRefGoogle Scholar
  96. Son DJ, Lee JW, Lee HY, Song HS, Lee CK, Hong JT (2007) Therapeutic application of anti-arthritis, pain releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 115:246–270PubMedCrossRefGoogle Scholar
  97. Steigerwaldt F, Mathies DF (1966) Standardized bee venom (SBV) therapy of arthritis. Controlled study of 50 cases with 84 % benefit. Ind Med Surg 35:1045–1050PubMedGoogle Scholar
  98. Terc P (1904) Lecture from the monthly assembly of beekeepers, 11 February 1904. Bee Venom: the natural curative for arthritis and rheumatism, appendix H, G.P. Putnam’s Sons, New York, pp 183–197Google Scholar
  99. Tu AT (1977) Bee venom 501–515. Venoms: chemistry and molecular biology. Wiley, New YorkGoogle Scholar
  100. Vick JA, Shipman WH (1972) Effects of whole bee venom and its fractions (apamin and melittin) on plasma cortisol levels in the dog. Toxicon 10:377–380PubMedCrossRefGoogle Scholar
  101. Vick JA, Mehlman B, Brooks R, Shipman WH (1972) Effect of bee venom and melittin on plasma cortisol in the unanesthetized monkey. Toxicon 10:581–586PubMedCrossRefGoogle Scholar
  102. Vick JA, Warren GB, Brooks RB (1976) The effects of treatment with whole bee venom on cage activity and plasma cortisol levels in the arthritic dog. Inflammation 1:167–174CrossRefGoogle Scholar
  103. Von Bredow J, Short T, Beard G, Reid K (1981) Effectiveness of bee venom therapy in the treatment of canine arthritis. NAAS Proc 4:45–48Google Scholar
  104. Vyatchannikov NK, Sinka AY (1973) Effect of melittin, the major constituent of bee venom, on the central nervous system. Farmakol Toksikol 36:625Google Scholar
  105. Weissmann G, Zurier RB, Mitnick D, Bloomgarden D (1973) Effects of bee venom of experimental arthritis. Ann Rheum Dis 32:466–470PubMedCrossRefGoogle Scholar
  106. Wesselius T, Jeersema DJ, Mostert JP, Heerings NP, Admiraal-Behloul F, Talebian A, van Buchem MA, De Keyser J (2005) A randomized crossover study of bee sting therapy for multiple sclerosis. Neurology 65:1764–1768PubMedCrossRefGoogle Scholar
  107. Won JH, Choi ES, Kim CMH, Hong SS (1999) The effectiveness of bee venom on osteoarthritis patients. K Rheumatol 6(3):218–226Google Scholar
  108. Yin CS, Lee HJ, Hong SJ, Chung JH, Koh HG (2005) Microarray analysis of gene expression in Chondro- sarcoma cells treated with bee venom. Toxicon 45:81–91PubMedCrossRefGoogle Scholar
  109. Yoannovotich G, Chahovitch X (1932) Le traitement des tumeurs par le venin des abeilles. In Achard C, Renault J (eds), Bulletin de l’Académie nationale de médecine, 3e série, tome 107. Masson et Cie, Paris, pp. 892–893Google Scholar
  110. Yue HY, Fujita T, Kumamoto E (2005) Phospholipase A2 activation by melittin enhances spontaneous glutamatergic excitatory transmission in rat substantia gelatinosa neurons. Neuroscience 135:485–495PubMedCrossRefGoogle Scholar
  111. Yun HS, Lee JD, Lee YH (2000) Systemic review: the study on bee venom related to cancer in PubMed. KJAMS 17(4):69–78Google Scholar
  112. Zaitsev GP, Poriadin VT (1961) Bee venom in the treatment of ankylosing spondylitis and polyarthritis, Moscow National Institute of Medicine, MoscowGoogle Scholar
  113. Zaitsev GP, Poriadin VT (1973) Bee venom in the treatment of the arterial vessels of the extremities and of the diseases of the spine and joints. XVIII Apimondia Congress Press, pp 1–9Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Graduate School of Integrated MedicineCHA UniversitySeongnamKorea

Personalised recommendations