Trampling the Antarctic: Consequences of Pedestrian Traffic on Antarctic Soils

  • Pablo TejedoEmail author
  • Luis R. Pertierra
  • Javier Benayas


Antarctic soils provide habitat for fauna and flora which are regionally important and, in some cases, include endemic representatives. Thus, protection of this component of the ecosystem should be a priority. In this chapter, our focus is on the vulnerability of Antarctic soils to foot traffic (heretofore referred to as trampling) and possible future scenarios with regards to the conservation of Antarctic soils. We begin by briefly describing the principal abiotic and biotic features of Antarctic soils, and reviewing the limited studies that have examined the consequences of trampling. We then examine a range of drivers of change that could play a decisive role in the future conservation of Antarctic soils, such as climate change, human pressure and species introduction. Taking into consideration the current legal and management measures for Antarctic soils conservation, we propose two possible future scenarios assuming different management models: a Business-As-Usual scenario and a conservation-focused situation. The chapter ends with a small reflection centered on the difficulties in achieving a conservation-focused future, and the need to consider whether conservation of soil against trampling should be a priority on the agenda of the Antarctic Treaty nations and the international scientific community.


Human impact Antarctic soils vulnerability Environmental monitoring  Codes of conduct Soil conservation  



This chapter was contributed by different projects supported by the Spanish Government (REN2000-0435-ANT, REN2002-11617-E, CGL2004-20451-E, CGL2005/06549/02/01-ANT, POL2006-06635, CGL2007-28761-E/ANT and CTM2009-06604-E). We would like to thank the Spanish Polar Committee, the BIO Las Palmas of the Spanish Navy, the Unit of Marine Technology (UMT) from CSIC, the Spanish station Gabriel de Castilla and the military members that provided support on the field. Two people contributed to largely improve the document: Tanya O’Neill from Landcare Research ~ Manaaki Whenua (New Zealand) and Dr. Tina Tin from the Antarctic and Southern Ocean Coalition (ASOC). Thank you very much for your constructive and helpful comments on the intermediate versions of the manuscript.


  1. Adams, B. J., Bardgett, R. D., Ayres, E., Wall, D. H., Aislabie, J., Bamforth, S., et al. (2006). Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38, 3003–3018.CrossRefGoogle Scholar
  2. ASOC. (2008). A decade of Antarctic tourism: Status, change, and actions needed. Information Paper 41 presented at XXXI Antarctic Treaty Consultative Meeting, Kyiv, Ukraine.Google Scholar
  3. ASOC. (2009). Tourism and land-based facilities in Antarctica. Information Paper 23 presented at XXXII Antarctic Treaty Consultative Meeting, Baltimore, USA.Google Scholar
  4. ASOC. (2011). Land-based tourism in Antarctica. Information Paper 87 presented at XXXIV Antarctic Treaty Consultative Meeting, Buenos Aires, Argentina.Google Scholar
  5. ATS. (2012). Site Guidelines for visitors. Retrieved from:
  6. Ayres, E., Nkem, J. N., Wall, D. H., Simmons, B. L., Adams, B. J., Barreto, J. E., & Virginia, R. A. (2007). Human trampling reduces soil faunal populations and soil respiration in the McMurdo Dry Valleys, Antarctica. Paper presented at the ESA/SER Joint Meeting, San José, California.Google Scholar
  7. Ayres, E., Nkem, J. N., Wall, D. H., Adams, B. J., Barrett, J. E., Bross, E. J., et al. (2008). Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica. Conservation Biology, 22, 1544–1551.CrossRefGoogle Scholar
  8. Barrett, J. E., Virginia, R. A., Parsons, A. N., & Wall, D. H. (2005). Potential carbon and nitrogen turnover in soils of the McMurdo Dry Valleys, Antarctica. Arctic, Antarctic, and Alpine Research, 37, 107–116.Google Scholar
  9. Barrett, J. E., Virginia, R. A., Hopkins, D. W., Aislabie, J., Bargagli, R., Bockheim, J. G., et al. (2006). Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biology and Biochemistry, 38, 3019–3034.CrossRefGoogle Scholar
  10. Bastmeijer, K., & Roura, R. (2008). Environmental impact assessment in Antarctica. In K. Bastmeijer & T. Koivurova (Eds.), Theory and practice of transboundary environmental impact assessment (pp. 175–219). Monographs Series on Legal aspects of sustainable development. Leiden, Netherlands: Brill/Martinus Nijhof Publishers.Google Scholar
  11. Belnap, J. (2006). The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrological Processes, 20, 3159–3178.CrossRefGoogle Scholar
  12. Bergstrom, D. M., & Chown, S. L. (1999). Life at the front: History, ecology and change on Southern Ocean Islands. Trends in Ecology and Evolution, 14, 472–476.CrossRefGoogle Scholar
  13. Bergstrom, D. M., Hodgson, D. A., & Convey, P. (2006). The physical setting of the Antarctic. In D. M. Bergstrom, P. Convey & A. H. L. Huiskes (Eds.), Trends in Antarctic terrestrial and limnetic ecosystems. Antarctica as a global indicator (pp. 15–34). Berlin, Germany: Springer.Google Scholar
  14. Bertram, E. (2007). Antarctic shipborne tourism: an expanding industry. In J. M. Snyder & B. Stonehouse (Eds.), Prospects for polar tourism (pp. 149–169). Wallingford: CABI Publishers.CrossRefGoogle Scholar
  15. Beyer, L., & Bölter, M. (Eds.). (2002). Geoecology of Antarctic ice-free coastal landscapes. Ecological studies (Vol. 154). Berlin, Germany: Springer.Google Scholar
  16. Block, W. (1996). Cold or drought: The lesser of two evils for terrestrial arthropods? European Journal of Entomology, 93, 325–339.Google Scholar
  17. Block, W., Lewis-Smith, R. I., & Kennedy, A. D. (2009). Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biological Reviews, 84, 449–484.CrossRefGoogle Scholar
  18. Bokhorst, S., Huiskes, A. H. L., Convey, P., van Bodegom, P. M., & Aerts, R. (2008). Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biology and Biochemistry, 40, 1547–1556.CrossRefGoogle Scholar
  19. Braun, C., Fritz, H., Mustafa, O., Nordt, A., Pfeiffer, S., & Peter H.-U. (2013). Environmental assessment and management challenges of the Fildes Peninsula region. In T. Tin, D. Liggett, P. T. Maher & M. Lamers (Eds.), Antarctic futures: Human Engagement with the Antarctic environment. Dordrecht, Netherlands: Springer.Google Scholar
  20. Cameron, R. E. (1969). Abundance of microflora in soils of desert regions. Technical Report (Vol. 32–1378). Pasadena, CA: Jet Propulsion Laboratory.Google Scholar
  21. Campbell, I. B., & Claridge, G. G. C. (1987). Antarctica: Soils, weathering processes and environment. Amsterdam: Elsevier.Google Scholar
  22. Campbell, I. B., Balks, M. R., & Claridge, G. G. C. (1993). A simple visual technique for estimating the effects of fieldwork on the terrestrial environment in an ice-free area of Antarctica. Polar Record, 29, 321–328.CrossRefGoogle Scholar
  23. Campbell, I. B., Claridge, G. G. C., & Balks, M. R. (1994). The effects of human activities on moisture content of soils and underlying permafrost from the McMurdo Sound region, Antarctica. Antarctic Science, 6, 307–314.CrossRefGoogle Scholar
  24. Campbell, I. B., Claridge, G. G. C., & Balks, M. R. (1998). Short and long-term impacts of human disturbance on snow-free surfaces in Antarctica. Polar Record, 34, 15–24.CrossRefGoogle Scholar
  25. Chen, J., & Blume, H. P. (1997). Impact of human activities on the terrestrial ecosystem of Antarctica: A review. Polarforschung, 65, 83–92.Google Scholar
  26. Convey, P. (1996). The influence of environmental characteristics on the life history attributes of Antarctic terrestrial biota. Biological Reviews, 71, 191–225.CrossRefGoogle Scholar
  27. Convey, P. (2001). Terrestrial ecosystem response to climate changes in the Antarctic. In G. R. Walther, C. A. Burga, & P. J. Edwards (Eds.), “Fingerprints’’ of climate change: Adapted behaviour and shifting species ranges (pp. 17–42). New York: Kluwer.CrossRefGoogle Scholar
  28. Convey, P. (2003). Maritime Antarctic climate change: signals from terrestrial biology. In E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby & R. Bindschadler (Eds.), Antarctic Peninsula climate variability: Historical and palaeoenvironmental perspectives, (pp. 145–158). Antarctic research series (Vol. 79). Washington, D.C.: American Geophysical Union.Google Scholar
  29. Convey, P. (2006). Antarctic climate change and its influences on terrestrial ecosystems. In D. M. Bergstrom, P. Convey, & A. H. L. Huiskes (Eds.), Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator (pp. 253–272). Dordrecht: Springer.CrossRefGoogle Scholar
  30. Convey, P. (2008). Non-native species in Antarctic terrestrial and freshwater environments: Presence, sources, impacts and predictions. In M. Rogan-Finnemore (Ed.), Non-native Species in the Antarctic: Proceedings (pp. 97–130). Christchurch: Gateway Antarctica.Google Scholar
  31. Convey, P. (2010). Terrestrial biodiversity in Antarctica: Recent advances and future challenges. Polar Science, 4, 135–147.CrossRefGoogle Scholar
  32. Convey, P., & Lebouvier, M. (2009). Environmental change and human impacts on terrestrial ecosystems of the sub-Antarctic islands between their discovery and the mid-twentieth century. Papers and Proceedings of the Royal Society of Tasmania, 143, 33–44.Google Scholar
  33. Convey, P., Pugh, P. J. A., Jackson, C., Murray, A. W., Ruhland, C. T., Xiong, F. S., et al. (2002). Response of Antarctic terrestrial arthropods to multifactorial climate manipulation over a four year period. Ecology, 83, 3130–3140.CrossRefGoogle Scholar
  34. Convey, P., Stevens, M. I., Hodgson, D. A., Smellie, J. L., Hillenbrand, C.-D., Barnes, D. K. A., et al. (2009). Exploring biological constraints on the glacial history of Antarctica. Quaternary Science Reviews, 27–28, 3035–3048.CrossRefGoogle Scholar
  35. Cowan, D. A., Chown, S. L., Convey, P., Tuffin, M., Hughes, K. A., Pointing, S., et al. (2011). Non-indigenous microorganisms in the Antarctic: Assessing the risks. Trends in Microbiology, 19, 540–548.CrossRefGoogle Scholar
  36. Day, T. A., Ruhland, C. T., Strauss, S. L., Park, J. H., Krieg, M. L., Krna, M. A., et al. (2009). Response of plants and the dominant microarthropod, Cryptopygus antarcticus, to warming and contrasting precipitation regimes in Antarctic tundra. Global Change Biology, 15, 1640–1651.CrossRefGoogle Scholar
  37. De Leeuw, C. (1994). Tourism in Antarctica and its impact on vegetation. PhD thesis. Groningen: Arctic Centre, University of Groningen.Google Scholar
  38. Dózsa-Farkas, K., & Convey, P. (1997). Christensenia, a new terrestrial enchytraeid genus from Antarctica. Polar Biology, 17, 482–486.CrossRefGoogle Scholar
  39. Dózsa-Farkas, K., & Convey, P. (1998). Erratum; Christensenia, a new terrestrial enchytraeid genus from Antarctica. Polar Biology, 20, 292.CrossRefGoogle Scholar
  40. Ducklow, H. W., Baker, K., Martinson, D. G., Quetin, L. B., Ross, R. M., Smith, R. C., et al. (2007). Marine pelagic ecosystems: The West Antarctic Peninsula. Philosophical Transactions of the Royal Society Series B, 362, 67–94.CrossRefGoogle Scholar
  41. Ecuador & Spain. (2012). Revised Visited Site Guidelines: Aitcho Islands. Working Paper 59 presented at XXXV Antarctic Treaty Consultative Meeting, Hobart, Australia.Google Scholar
  42. Elnitsky, M. A., Benoit, J. B., Denlinger, D. L., & Lee, R. E. J. (2008). Desiccation tolerance and drought acclimation in the Antarctic collembolan Cryptopygus antarcticus. Journal of Insect Physiology, 54, 1432–1439.CrossRefGoogle Scholar
  43. Fowbert, J. A., & Smith, R. I. L. (1994). Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arctic and Alpine Research, 26, 290–296.CrossRefGoogle Scholar
  44. Freckman, D. W., & Viginia, R. A. (1997). Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology, 78, 363–369.CrossRefGoogle Scholar
  45. Frenot, Y., Chown, S. L., Whinam, J., Selkirk, P., Convey, P., Skotnicki, M., et al. (2005). Biological invasions in the Antarctic: Extent, impacts and implications. Biological Reviews, 80, 45–72.CrossRefGoogle Scholar
  46. Gerighausen, U., Bräutigam, K., Mustafa, O., & Peter, H. U. (2003). Expansion of vascular plants on an Antarctic island: A consequence of climate change? In A. H. L. Huiskes, W. W. C. Gieskes, J. Rozema, R. M. L. Schorno, S. M. van der Vies, & W. J. Wolff (Eds.), Antarctic biology in a global context (pp. 79–83). Leiden: Backhuys.Google Scholar
  47. Greenslade, P. (2010). Collembola fauna of the South Shetland Islands revisited. Antarctic Science, 22, 233–242.CrossRefGoogle Scholar
  48. Grobe, C. W., Ruhland, C. T., & Day, T. A. (1997). A new population of Colobanthus quitensis near Arthur Harbor, Antarctica: Correlating recruitment with warmer summer temperatures. Arctic and Alpine Research, 29, 217–221.CrossRefGoogle Scholar
  49. Hansom, J. D., & Gordon, J. E. (1998). Antarctic environments and resources. Harlow: Longman.Google Scholar
  50. Harris, C. M. (1991). Environmental effects of human activities on King George Island, South Shetland Islands, Antarctica. Polar Record, 27, 193–204.CrossRefGoogle Scholar
  51. Hawes, T. C. (2011). Rafting in the Antarctic springtail, Gomphiocephalus hodgsoni. Antarctic Science, 23, 456–460.CrossRefGoogle Scholar
  52. Headland, R. K., & Keage, P. L. (1985). Activities on the King George Island group, South Shetland Islands, Antarctica. Polar Record, 22, 475–484.CrossRefGoogle Scholar
  53. Hogg, I. D., Cary, S. C., Convey, P., Newsham, K. K., O’Donnell, T., Adams, B. J., et al. (2006). Biotic interactions in Antarctic terrestrial ecosystems: Are they a factor? Soil Biology and Biochemistry, 38, 3035–3040.CrossRefGoogle Scholar
  54. Hughes, K. A. (2010). How committed are we to monitoring human impacts in Antarctica? Environmental Research Letters, 5, 041001. doi: 10.1088/1748-9326/5/4/041001.CrossRefGoogle Scholar
  55. Hughes, K. A., & Convey, P. (2010). The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Global Environmental Change, 20, 96–112.CrossRefGoogle Scholar
  56. Hughes, K. A., & Worland, M. R. (2009). Spatial distribution, habitat preference and colonization status of two alien terrestrial invertebrate species in Antarctica. Antarctic Science, 22, 221–231.CrossRefGoogle Scholar
  57. Hughes, K. A., Convey, P., & Huiskes, A. H. L. (2013). Global movement and homogenisation of biota: challenges to the environmental management of Antarctica? In T. Tin, D. Liggett, P. T. Maher, & M. Lamers (Eds.), Antarctic futures: Human engagement with the Antarctic environment. Dordrecht: Springer.Google Scholar
  58. IAATO. (2011a). 20102011 Number of Visitors (tourists, staff and crew) per Site per Vessel: All Antarctic Sites (6 Sheets Total). Retrieved from:
  59. IAATO. (2011b). 20102011 Number of Visits per Site/per Activity (6 Sheets: Sorted by All sites, Continental and Peninsula). Retrieved from:
  60. IAATO. (2011c). IAATO Overview of Antarctic Tourism: 20102011 Season and Preliminary Estimates for 2011-2012 Antarctic Season. Information Paper 106. Rev 1 presented at XXXIV Antarctic Treaty Consultative Meeting, Buenos Aires, Argentina.Google Scholar
  61. IAATO. (2012). Guidance for visitors to the Antarctic. Retrieved from:
  62. IPCC. (2007). Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press.Google Scholar
  63. Japan. (2011). Inspection undertaken by Japan in accordance with Article VII of the Antarctic Treaty and Article XIV of the protocol on environmental protection. Working Paper 1 presented at XXXIV Antarctic Treaty Consultative Meeting, Buenos Aires, Argentina.Google Scholar
  64. Kanda, H., & Inoue, M. (1994). Activities on the King George Island group, South Shetland Islands, Antarctica. Polar Biology, 7, 221–231.Google Scholar
  65. Klein, A. G., Sweet, S. T., Kennicutt II, M. C., Wade, T. L., Palmer, T. A., & Montagna, P. (2013). Long term monitoring of human impacts to the terrestrial environment at McMurdo station. In T. Tin, D. Liggett, P. T. Maher & M. Lamers (Eds.), Antarctic futures: Human engagement with the Antarctic environment. Dordrecht: Springer.Google Scholar
  66. Kriwoken, L. K., & Rootes, D. (2000). Tourism on ice: Environmental impact assessment of Antarctic tourism. Impact Assessment and Project Appraisal, 18(2), 138–150.CrossRefGoogle Scholar
  67. Lamers, M. (2009). The future of tourism in Antarctica. Challenges for sustainability. PhD Thesis. Maastricht: Universitaire Pers Maastricht.Google Scholar
  68. Lawley, B., Ripley, S., Bridge, P., & Convey, P. (2004). Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Applied and Environmental Microbiology, 70, 5963–5972.CrossRefGoogle Scholar
  69. Navas, A., López-Martínez, J., Casas, J., Machín, J., Durán, J. J., Serrano, E., et al. (2008). Soil characteristics on varying lithological substrates in the South Shetland Islands, maritime Antarctica. Geoderma, 144, 123–139.CrossRefGoogle Scholar
  70. O’Neill, T. A., & Balks, M. R. (2010). A provisional method for assessing the impact on, and recovery of, Antarctic Desert Pavements from human-induced disturbances. Paper presented at the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia.Google Scholar
  71. O’Neill, T. A., Balks, M. R., & López-Martínez, J. (2010). Soil surface recovery from foot traffic in the Ross Sea Region of Antarctica. Paper presented at IPY Oslo Science Conference, Oslo, Norway.Google Scholar
  72. Olech, M. (1996). Human impact on terrestrial ecosystems in West Antarctica. Polar Biology, 9, 299–306.Google Scholar
  73. Olech, M., & Chwedorzewska, K. J. (2011). The first appearance and establishment of an alien vascular plant in natural habitats on the forefield of a retreating glacier in Antarctica. Antarctic Science, 23, 153–154.CrossRefGoogle Scholar
  74. Parkinson, C. L. (2002). Trends in the length of the Southern Ocean sea ice season, 1979–1999. Annals of Glaciology, 34, 435–440.CrossRefGoogle Scholar
  75. Parsons, P. N., Barrett, J. E., Wall, D. H., & Virginia, R. A. (2004). Soil carbon dioxide flux in Antarctic dry valley ecosystems. Ecosystems, 7, 286–295.CrossRefGoogle Scholar
  76. Pertierra, L. R., Lara, F., Tejedo, P., Quesada, A. & Benayas, J. (2013a). Rapid denudation processes in cryptogamic communities from Maritime Antarctica subjected to human trampling. Antarctic Science, 25, 318–328.Google Scholar
  77. Pertierra, L. R., Tejedo, P., & Benayas, J. (2013b). Looking into the future of Deception Island: Current status, drivers of change and policy alternatives. In T. Tin, D. Liggett, P. T. Maher & M. Lamers (Eds.), Antarctic futures: Human engagement with the Antarctic environment. Dordrecht: Springer.Google Scholar
  78. Peter, H.-U., Buesser, C., Mustafa, O., & Pfeiffer, S. (2008). Risk assessment for the Fildes Peninsula and Ardley Island, and development of management plans for their designation as Specially Protected or Specially Managed Areas. Dessau: German Environmental Agency. Retrieved from:
  79. Quayle, W. C., Peck, L. S., Peat, H., Ellis-Evans, J. C., & Harrigan, P. R. (2002). Extreme responses to climate change in Antarctic lakes. Science, 295, 645.CrossRefGoogle Scholar
  80. Quayle, W. C., Convey, P., Peck, L. S., Ellis-Evans, J. C., Butler, H. G., & Peat, H. J. (2003). Ecological responses of maritime Antarctic lakes to regional climate change. In E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby & R. Bindschadler (Eds.), Antarctic Peninsula climate variability: Historical and palaeoenvironmental perspectives (pp. 159–170). Antarctic Research Series (Vol. 79). Washington, D.C.: American Geophysical Union.Google Scholar
  81. Rosswall, T., & Heal, O. W. (Eds.). (1975). Structure and function of Tundra Ecosystems. Stockholm: Swedish Natural Science Research Council.Google Scholar
  82. Russian Federation (2010). Queen Maud Land—a new center of non-governmental activity in the Antarctic. Working Paper 61 presented at XXXIII Antarctic Treaty Consultative Meeting, Punta del Este, Uruguay.Google Scholar
  83. Sánchez, R.A., & Njaastad, B. (2013). Future challenges in environmental management of National Antarctic Programs. In T. Tin, D. Liggett, P. T. Maher & M. Lamers (Eds.), Antarctic futures: Human engagement with the Antarctic environment. Dordrecht: Springer.Google Scholar
  84. SCAR (2009). SCAR’s environmental code of conduct for terrestrial scientific field research in Antarctica. Information Paper 4 presented at XXXII Antarctic Treaty Consultative Meeting, Baltimore, USA.Google Scholar
  85. Schulte, G. G., Elnitsky, M. A., Benoit, J. B., Denlinger, D. L., & Lee, R. E. J. (2008). Extremely large aggregations of collembolan eggs on Humble Island, Antarctica: A response to early seasonal warming? Polar Biology, 31, 889–892.CrossRefGoogle Scholar
  86. Smith, R.I.L. (1972). Vegetation of the South Orkney Islands with particular reference to Signy Island. BAS Scientific Reports, 68. Cambridge: British Antarctic Survey.Google Scholar
  87. Smith, R. I. L. (1988). Destruction of Antarctic terrestrial ecosystems by a rapidly increasing fur seal population. Biological Conservation, 45, 55–72.CrossRefGoogle Scholar
  88. Smith, R. I. L., & Richardson, M. (2010). Fuegian plants in Antarctica: natural or anthropogenically assisted immigrants? Biological Invasions, 13, 1–5.CrossRefGoogle Scholar
  89. Snape, I., Stark, J. S., Cole, C. M., Gore, D. G., Duquesne, S., & Riddle, M. J. (2001). Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Record, 37, 199–214.CrossRefGoogle Scholar
  90. Sohlenius, B., Boström, S., & Jönsson, I. (2004). Occurrence of nematodes, tardigrades and rotifers on ice-free areas in East Antarctica. Pedobiologia, 48, 395–408.CrossRefGoogle Scholar
  91. Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X., & Rind, D. (2008). Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research, 113, C03S90. doi  10.1029/2007JC004269.
  92. Stewart, E., Draper, D., & Johnston, M. (2005). A review of tourism research in the Polar Regions. Arctic, 58, 383–394.Google Scholar
  93. Stonehouse, B. (1993). Shipborne tourism in Antarctica: Project Antarctic Conservation studies 1992/93. Polar Record, 29, 330–332.CrossRefGoogle Scholar
  94. Tedrow, J. C. F. (1977). Soils of the Polar Landscapes. New Brunswick: Rutgers University Press.Google Scholar
  95. Tejedo, P., Justel, A., Rico, E., Benayas, J., & Quesada, A. (2005). Measuring impacts on soils by human activity in an Antarctic special protected area. Terra Antarctica Reports, 11, 57–62.Google Scholar
  96. Tejedo, P., Justel, A., Benayas, J., Rico, E., Convey, P., & Quesada, A. (2009). Human impact on soils in an Antarctic specially protected areas: Tools to evaluate SCAR recommendations. Antarctic Science, 21, 229–236.CrossRefGoogle Scholar
  97. Tejedo, P., Pertierra, L. R., Benayas, J., Convey, P., Justel, A. & Quesada, A. (2012). Trampling on maritime Antarctica: can soil ecosystems be effectively protected through existing codes of conduct? Polar Research, 31, 10888,
  98. Thomas, D. N., Fogg, G. E., Convey, P., Fritsen, C. H., Gili, J. M, Gradinger, R., Laybourn-Parry, J., Reid, K., & Walton, D. W. H. (2008). The Biology of Polar Regions (2nd ed.). Biology of Habitats Series. Oxford: Oxford University Press.Google Scholar
  99. Tilbrook, P. J. (1967). Arthropod ecology in the Maritime Antarctic. In J. L. Gressitt. (Ed.), Entomology of Antarctica. Antarctic Research Series (Vol. 10, pp. 331–356). Washington D.C.: National Research Council, U.S.Google Scholar
  100. Tin, T., Fleming, Z. L., Hughes, K. A., Ainley, D. G., Convey, P., Moreno, C. A., et al. (2009). Impacts of local human activities on the Antarctic environment. Antarctic Science, 21, 3–33.CrossRefGoogle Scholar
  101. Turner, J., Bindschadler, R. A., Convey, P., Di Prisco, G., Fahrbach, E., Gutt, J., et al. (Eds.). (2009). Antarctic climate change and the environment. Cambridge: Scientific Committee on Antarctic Research.Google Scholar
  102. Van der Merwe, M., Chown, S. L., & Smith, V. R. (1997). Thermal tolerance limits in six weevil species (Coleoptera, Curculionidae) from sub-Antarctic Marion Island. Polar Biology, 18, 331–336.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Pablo Tejedo
    • 1
    Email author
  • Luis R. Pertierra
    • 1
  • Javier Benayas
    • 1
  1. 1.Departamento de EcologíaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations