Advertisement

Biomagnetic Signatures of Gastrointestinal Electrical Activity

  • L. Alan Bradshaw
  • Juliana Kim
  • Leo Cheng
  • William Richards
Chapter
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 10)

Abstract

Current flow in the cellular syncytium of the gastrointestinal tract results in measurable magnetic fields as well as the more commonly measured electrical potentials. While electrogastrography allows assessment of slow wave frequency dynamics, physical limitations introduced by abdominal volume conduction present situations in which magnetic field measurement may prove advantageous. For the gastric slow wave, spatiotemporal characteristics associated with propagation may be more easily ascertain magnetically. In the intestine, smaller signal strength coupled with the conductivity profile of the abdomen make the biomagnetic approach attractive. In this chapter, we present the historical and theoretical background of recording biomagnetic fields, explore how electrical activity in the stomach and small bowel are reflected in extracorporeal magnetic measurements and how mathematical modeling is helping to elucidate the sophisticated relationships between gastrointestinal physiology and external potentials and magnetic fields.

Keywords

Irritable Bowel Syndrome Slow Wave Mesenteric Ischemia Squid Magnetometer Slow Wave Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

EENG

(Electroenterogram)

EGG

(Electrogastrogram)

EMG

(Electromyogram)

GI

(Gastrointestinal)

ICA

(Independent Component Analysis)

MENG

(Magnetoenterogram)

MEG

(Magnetoencephalogram)

MGG

(Magnetogastrogram)

MSR

(Magnetic Shielded Room)

PCA

(Principal Component Analysis)

PPD

(Percentage Power Distribution)

SOBI

(Second Order Blind Identification)

SQUID

(RF-SQUID; DC-SQUID)

Notes

Acknowledgments

This work was funded in part by grants from the National Institutes of Health (R01 DK58197, R01 DK58697 and R01 DK64775). The authors also acknowledge the experimental assistance of the Vanderbilt Clinical Research Center and the SR Light Surgical Research Laboratory at Vanderbilt University.

References

  1. 1.
    Abid S, Lindberg G (2007) Electrogastrography: poor correlation with antro-duodenal manometry and doubtful clinical usefulness in adults. World J Gastroenterol 13(38):5101–5107PubMedGoogle Scholar
  2. 2.
    Akin A, Sun HH (1999) Time-frequency methods for detecting spike activity of stomach. Med Biol Eng Comput 37(3):381–390PubMedCrossRefGoogle Scholar
  3. 3.
    Aliev RR, Richards W, Wikswo JP (2000) A simple nonlinear model of electrical activity in the intestine. J Theor Biol 204(1):21–28PubMedCrossRefGoogle Scholar
  4. 4.
    Alvarez WC (1918) Differences in the behavior of segments from different parts of the intestine. Am J Physiol 45(4):342–350Google Scholar
  5. 5.
    Alvarez WC, Mahoney LJ (1922) Action Currents in Stomach and Intestine. Am J Physiol 58(3):476–493Google Scholar
  6. 6.
    Atanassova E, Daskalov I, Dotsinsky I, Christov I, Atanassova A (1995) Non-invasive electrogastrography. Part 1: Correlation between the gastric electrical activity in dogs with implanted and cutaneous electrodes. Arch Physiol Biochem 103(4):431–435PubMedCrossRefGoogle Scholar
  7. 7.
    Baule G, McFee R (1963) Detection of the magnetic field of the heart. Am Heart J 65:95–96Google Scholar
  8. 8.
    Bortolotti M (1998) Electrogastrography: a seductive promise, only partially kept. Am J Gastroenterol 93(10):1791–1794PubMedCrossRefGoogle Scholar
  9. 9.
    Bradshaw LA, Allos SH, Wikswo JP Jr, Richards WO (1997) Correlation and comparison of magnetic and electric detection of small intestinal electrical activity. Am J Physiol 272(5 Pt 1):G1159–G1167PubMedGoogle Scholar
  10. 10.
    Bradshaw LA, Richards WO, Wikswo JP Jr (2001) Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity. Med Biol Eng Comput 39(1):35–43PubMedCrossRefGoogle Scholar
  11. 11.
    Bradshaw LA, Myers AG, Redmond A, Wikswo JP, Richards WO (2003) Biomagnetic detection of gastric electrical activity in normal and vagotomized rabbits. Neurogastroenterol Motil 15(5):475–482PubMedCrossRefGoogle Scholar
  12. 12.
    Bradshaw LA, Myers AG, Richards WO, Drake WB Wikswo JP (2005) Vector analysis of biomagnetic fields. Med Biol Eng Comput 43(1):85–93Google Scholar
  13. 13.
    Bradshaw LA, Cheng LK, Richards WO, Pullan AJ (2009) Surface current density mapping for identification of gastric slow wave propagation. IEEE Trans Biomed Eng 56(8):2131–2139PubMedCrossRefGoogle Scholar
  14. 14.
    Bradshaw LA, Irimia A, Sims JA, Richards WO (2009) Biomagnetic signatures of uncoupled gastric musculature. Neurogastroenterol Motil 21(7):778–e50 Google Scholar
  15. 15.
    Brown BH, Smallwood RH, Duthie HL, Stoddard CJ (1975) Intestinal smooth muscle electrical potentials recorded from surface electrodes. Med Biol Eng 13(1):97–103PubMedCrossRefGoogle Scholar
  16. 16.
    Buist ML, Cheng LK, Yassi R, Bradshaw LA, Richards WO, Pullan AJ (2004) An anatomical model of the gastric system for producing bioelectric and biomagnetic fields. Physiol Meas 25(4):849–861PubMedCrossRefGoogle Scholar
  17. 17.
    Buist ML, Cheng LK, Sanders KM, Pullan AJ (2006) Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling? Exp Physiol 91(2):383–390PubMedCrossRefGoogle Scholar
  18. 18.
    Chang FY (2005) Electrogastrography: basic knowledge, recording, processing and its clinical applications. J Gastroenterol Hepatol 20(4):502–516. doi: 10.1111/j.1440-1746.2004.03751.x PubMedCrossRefGoogle Scholar
  19. 19.
    Chen JD, Schirmer BD, McCallum RW (1993) Measurement of electrical activity of the human small intestine using surface electrodes. IEEE Trans Biomed Eng 40(6):598–602PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng LK, Bodley JM, Pullan AJ (2003) Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology. IEEE Trans Biomed Eng 50(1):11–22. doi: 10.1109/TBME.2002.807326 PubMedCrossRefGoogle Scholar
  21. 21.
    Cohen D, Edelsack EA, Zimmerman JE (1970) Magnetocardiograms taken inside a shielded room with a superconducting point. Appl Phys Letters 16(7):278–280Google Scholar
  22. 22.
    Cordova-Fraga T, Gallucci M, Bradshaw A, Berch B, Richards WO (2007) A biomagnetic assessment of colonic electrical activity in pigs. Physiol Meas 28(1):41–48PubMedCrossRefGoogle Scholar
  23. 23.
    Corrias A, Buist ML (2007) A quantitative model of gastric smooth muscle cellular activation. Ann Biomed Eng 35(9):1595–1607PubMedCrossRefGoogle Scholar
  24. 24.
    Corrias A, Buist ML (2008) Quantitative cellular description of gastric slow wave activity. Am J Physiol Gastrointest Liver Physiol 294(4):G989–G995PubMedCrossRefGoogle Scholar
  25. 25.
    Davis RC, Garafolo L, Gault FP (1957) An exploration of abdominal potentials. J Comp Physiol Psychol 50(5):519–523PubMedCrossRefGoogle Scholar
  26. 26.
    DiLuzio S, Comani S, Romani GL, Basile C, Del Gratta C, Pizzella V (1989) A biomagnetic method for studying gastro-intestinal activity. Il Nuovo Cimento 11(12):1853–1859Google Scholar
  27. 27.
    Du P, O’Grady G, Cheng LK, Pullan AJ (2010) A multiscale model of the electrophysiological basis of the human electrogastrogram. Biophys J 99(9):2784–2792PubMedCrossRefGoogle Scholar
  28. 28.
    el-Sharkawy TY, Morgan, KG, Szurszewski JH (1978) Intracellular electrical activity of canine and human gastric smooth muscle. J Physiol 279:291–307Google Scholar
  29. 29.
    Erickson J, Obioha C, Goodale A, Bradshaw A, Richards W (2008) Noninvasive detection of small bowel electrical activity from SQUID magnetometer measurements using SOBI. Conf Proc IEEE Eng Med Biol Soc 2008:1871–1874PubMedGoogle Scholar
  30. 30.
    Erickson JC, Obioha C, Goodale A, Bradshaw LA, Richards WO (2009) Detection of small bowel slow-wave frequencies from noninvasive biomagnetic measurements. IEEE Trans Biomed Eng 56(9):2181–2189PubMedCrossRefGoogle Scholar
  31. 31.
    Geldof H, van der Schee EJ, Grashuis JL (1986) Electrogastrographic characteristics of interdigestive migrating complex in humans. Am J Physiol 250(2 Pt 1):G165–G171PubMedGoogle Scholar
  32. 32.
    Goodale A, Obioha CB, Erickson J, Irimia A, Williams B, Bradshaw LA, Richards WO (2008) Partial mesenteric ischemia alters biomagnetic slow wave. Gastroenterology 134(4):A673CrossRefGoogle Scholar
  33. 33.
    Greensite F, Huiskamp G (1998) An improved method for estimating epicardial potentials from the body surface. IEEE Trans Biomed Eng 45(1):98–104PubMedCrossRefGoogle Scholar
  34. 34.
    Haberkorn W, Steinhoff U, Burghoff M, Kosch O, Morguet A, Koch H (2006) Pseudo current density maps of electrophysiological heart, nerve or brain function and their physical basis. Biomagn Res Technol 4:5PubMedCrossRefGoogle Scholar
  35. 35.
    Hamilton JW, Bellahsene BE, Reichelderfer M, Webster JG, Bass P (1986) Human electrogastrograms. Comparison of surface and mucosal recordings. Dig Dis Sci 31(1):33–39PubMedCrossRefGoogle Scholar
  36. 36.
    Han C, Liu Z, Zhang X, Pogwizd S, He B (2008) Noninvasive three-dimensional cardiac activation imaging from body surface potential maps: a computational and experimental study on a rabbit model. IEEE Trans Med Imaging 27(11):1622–1630. doi: 10.1109/TMI.2008.929094 PubMedCrossRefGoogle Scholar
  37. 37.
    He B, Li G, Zhang X (2003) Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Trans Biomed Eng 50(10):1190–1202. doi: 10.1109/TBME.2003.817637 PubMedCrossRefGoogle Scholar
  38. 38.
    Hosaka H, Cohen D, Cuffin BN, Horacek BM (1976) Part III: the effect of the torso boundaries on the magnetocardiogram. J Electrocardiol 9(4):418–425PubMedCrossRefGoogle Scholar
  39. 39.
    Huizinga JD, Diamant NE, el-Sharkawy TY (1983) Electrical basis of contractions in the muscle layers of the pig colon. Am J Physiol 245(4):G482–G491PubMedGoogle Scholar
  40. 40.
    Irimia A, Gallucci MR, Richards WO, Bradshaw LA (2006) Separation of gastric electrical control activity from simultaneous MGG/EGG recordings using independent component analysis. Conf Proc IEEE Eng Med Biol Soc 1:3110–3113PubMedGoogle Scholar
  41. 41.
    Irimia A, Richards WO, Bradshaw LA (2006) Magnetogastrographic detection of gastric electrical response activity in humans. Phys Med Biol 51(5):1347–1360PubMedCrossRefGoogle Scholar
  42. 42.
    Irimia A, Richards WO, Bradshaw LA (2009) Comparison of conventional filtering and independent component analysis for artifact reduction in simultaneous gastric EMG and magnetogastrography from porcines. IEEE Trans Biomed Eng 56(11):2611–2618PubMedCrossRefGoogle Scholar
  43. 43.
    Jenks WG, Sadeghi SSH, Wikswo JP (1997) SQUIDs for nondestructive evaluation. J Phys D Appl Phys 30:293–323Google Scholar
  44. 44.
    Jenks WG, Thomas IM, Wikswo JP Jr (1997) SQUIDs. In: Trigg GL et al (eds) Encyclopedia of applied physics, vol 19. VCH Publishers, Deerfield Beach, pp 457–469 Google Scholar
  45. 45.
    Kim JH, Bradshaw LA, Pullan AJ, Cheng LK (2010) Characterization of gastric electrical activity using magnetic field measurements: a simulation study. Ann Biomed Eng 38(1):177–186PubMedCrossRefGoogle Scholar
  46. 46.
    Kim JH, Pullan AJ, Cheng LK (2011) Reconstruction of multiple gastric electrical wave fronts using potential based inverse methods. Conference proceedings: … annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society. pp 1355–1358 doi: 10.1109/IEMBS.2011.6090319
  47. 47.
    Lammers WJ, Ver DL, Stephen B, Smets D, Schuurkes JA (2009) Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am J Physiol Gastrointest Liver Physiol 296(6):G1200–G1210PubMedCrossRefGoogle Scholar
  48. 48.
    Lin AS, Buist ML, Cheng LK, Smith NP, Pullan AJ (2006) Computational simulations of the human magneto- and electroenterogram. Ann Biomed Eng 34(8):1322–1331PubMedCrossRefGoogle Scholar
  49. 49.
    Lin AS, Buist ML, Smith NP, Pullan AJ (2006) Modelling slow wave activity in the small intestine. J Theor Biol 242(2):356–362PubMedCrossRefGoogle Scholar
  50. 50.
    Mazur M, Furgala A, Jablonski K, Madroszkiewicz D, Ciecko-Michalska I, Bugajski A, Thor PJ (2007) Dysfunction of the autonomic nervous system activity is responsible for gastric myoelectric disturbances in the irritable bowel syndrome patients. J Physiol Pharmacol 58(Suppl 3):131–139PubMedGoogle Scholar
  51. 51.
    Miftakhov RN, Abdusheva GR, Christensen J (1999) Numerical simulation of motility patterns of the small bowel. 1. formulation of a mathematical model. J Theor Biol 197(1):89–112PubMedCrossRefGoogle Scholar
  52. 52.
    Obioha CB, Goodale A, Erickson J, Bradshaw LA, Richards WO (2008) Correlation of biomagnetic and bioelectric recordings in a patient with ischemic bowel. Gastroenterology 134(4):A674CrossRefGoogle Scholar
  53. 53.
    O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJ, Windsor JA, Pullan AJ (2010) Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol 299(3):G585–G592PubMedCrossRefGoogle Scholar
  54. 54.
    O’Grady G, Egbuji JU, Du P, Lammers WJ, Cheng LK, Windsor JA, Pullan AJ (2011) High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol Motil 23(9):e345–e355PubMedCrossRefGoogle Scholar
  55. 55.
    Oldenburg WA, Lau LL, Rodenberg TJ, Edmonds HJ, Burger CD (2004) Acute mesenteric ischemia: a clinical review. Arch Intern Med 164(10):1054–1062PubMedCrossRefGoogle Scholar
  56. 56.
    Petrie RJ, Turnbull G, Stroink G, van Leeuwen P, Brandts BVV (1996) Single and multichannel magnetic measurements of human gastrointestinal activity. Can J Gastroenterol 10(suppl. A):S111, 48AGoogle Scholar
  57. 57.
    Pezzolla F, Riezzo G, Maselli MA, Giorgio I (1989) Electrical activity recorded from abdominal surface after gastrectomy or colectomy in humans. Gastroenterology 97(2):313–320PubMedGoogle Scholar
  58. 58.
    Prats-Boluda G, Garcia-Casado J, Martinez-de-Juan JL, Ye-Lin Y (2011) Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Med Eng Phys 33(4):446–455PubMedCrossRefGoogle Scholar
  59. 59.
    Pullan AJ, Cheng LK, Buist ML (2005) Mathematically modelling the electrical activity of the heart: from cell to body surface and back again. World Scientific, New JerseyCrossRefGoogle Scholar
  60. 60.
    Qian LW, Peters LJ, Chen JD (2001) Clonidine inhibits postprandial response of antral myoelectrical activity. Dig Dis Sci 46(3):626–631PubMedCrossRefGoogle Scholar
  61. 61.
    Ramanathan C, Ghanem RN, Jia P, Ryu K, Rudy Y (2004) Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med 10(4):422–428. doi: 10.1038/nm1011 PubMedCrossRefGoogle Scholar
  62. 62.
    Robertson-Dunn B, Linkens DA (1974) A mathematical model of the slow-wave electrical activity of the human small intestine. Med Biol Eng 12(6):750–758PubMedCrossRefGoogle Scholar
  63. 63.
    Roth BJ (1990) Biomagnetic studies of peripheral nerves and skeletal muscle. Adv Neurol 54:101–117PubMedGoogle Scholar
  64. 64.
    Richards WO, Staton DJ, Golzarian J, Friedman RN, Wikswo JP (1993) Non-invasive SQUID magnetometer measurement of human gastric and small bowel. In: Deecke L, Baumgartner C, Stroink G, Williamson SJ (eds) Biomagnetism: fundamental research and clinical applications. Proceedings of the ninth international conference on biomagnetism, 9, Springer, New YorkGoogle Scholar
  65. 65.
    Richards WO, Bradshaw LA, Staton DJ, Garrard CL, Liu F, Buchanan S, Wikswo JP Jr (1996) Magnetoenterography (MENG): noninvasive measurement of bioelectric activity in human small intestine. Dig Dis Sci 41(12):2293–2301PubMedCrossRefGoogle Scholar
  66. 66.
    Seidel SA, Bradshaw LA, Ladipo JK, Wikswo JP Jr, Richards WO (1999) Noninvasive detection of ischemic bowel. J Vasc Surg 30(2):309–319PubMedCrossRefGoogle Scholar
  67. 67.
    Sheridan CJ, Matuz T, Draganova R, Eswaran H, Preissl H (2010) Fetal magnetoencephalography—achievements and challenges in the study of prenatal and early postnatal brain responses: a review. Infant Child Dev 19(1):80–93PubMedCrossRefGoogle Scholar
  68. 68.
    Simonian HP, Panganamamula K, Parkman HP, Xu X, Chen JZ, Lindberg G, Xu H, Shao C, Ke MY, Lykke M, Hansen P, Barner B, Buhl H (2004) Multichannel electrogastrography (EGG) in normal subjects: a multicenter study. Dig Dis Sci 49(4):594–601PubMedCrossRefGoogle Scholar
  69. 69.
    Smit X, Stefan de KB, Walbeehm ET, Dudok van Heel EB, van Neck JW, Hovius SE (2003) Magnetoneurography: recording biomagnetic fields for quantitative evaluation of isolated rat sciatic nerves. J Neurosci Methods 125(1–2):59–63Google Scholar
  70. 70.
    Smout AJ, van der Schee EJ, Grashuis JL (1980) What is measured in electrogastrography? Dig Dis Sci 25(3):179–187PubMedCrossRefGoogle Scholar
  71. 71.
    Strasburger JF, Cheulkar B, Wakai RT (2008) Magnetocardiography for fetal arrhythmias. Heart Rhythm 5(7):1073–1076PubMedCrossRefGoogle Scholar
  72. 72.
    Staton DJ, Soteriou MC, Friedman RN, Richards WO, Wikswo JP (1991) First magnetic measurements of smooth muscle in vitro using a high-resolution SQUID magnetometer. In: Proceedings of the 13th annual international conference on biomagnetism, vol 13, pp 550–551Google Scholar
  73. 73.
    Stufflebeam SM (2011) Clinical magnetoencephalography for neurosurgery. Neurosurg Clin N Am 22(2):153–167, vii–viii Google Scholar
  74. 74.
    van der Voort IR, Osmanoglou E, Seybold M, Heymann-Monnikes I, Tebbe J, Wiedenmann B, Klapp BF, Monnikes H (2003) Electrogastrography as a diagnostic tool for delayed gastric emptying in functional dyspepsia and irritable bowel syndrome. Neurogastroenterol Motil 15(5):467–473PubMedCrossRefGoogle Scholar
  75. 75.
    Verhagen MAM, van Schelven LJ, Samsom M, Smout AJPM (1999) Pitfalls in the analysis of electrogastrographic recordings. Gastroenterology 117(2):453–460Google Scholar
  76. 76.
    Wang ZS, Elsenbruch S, Orr WC, Chen JD (2003) Detection of gastric slow wave uncoupling from multi-channel electrogastrogram: validations and applications. Neurogastroenterol Motil 15(5):457–465PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • L. Alan Bradshaw
    • 1
  • Juliana Kim
    • 2
  • Leo Cheng
    • 1
    • 2
  • William Richards
    • 3
  1. 1.Department of SurgeryVanderbilt UniversityNashvilleUSA
  2. 2.Auckland Bioengineering InstituteThe University of AucklandAucklandNew Zealand
  3. 3.Department of SurgeryUniversity of South AlabamaMobileUSA

Personalised recommendations