Skip to main content

The Electrical Regulation of GI Motility at the Whole-Organ Level

  • Chapter
  • First Online:
New Advances in Gastrointestinal Motility Research

Abstract

A rhythmic bioelectrical activity, composed of slow waves and spikes, plays a central role in coordinating contractions in much of the gastrointestinal tract. This chapter addresses the current state of knowledge of the electrical activity contributing to the regulation of GI contractions, with a specific focus on organ-level excitation in the stomach and small intestine. Emphasis is placed on data obtained from extracellular recordings, which effectively profile patterns of bioelectrical propagation over large tissue scales. Recent advances in understanding whole-organ excitation from high-resolution (HR) electrical mapping studies are discussed in particular detail. Lastly, clinical and research questions of current interest are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez WC, Mahoney LJ (1922) Action currents in stomach and intestine. Am J Physiol 58:476–493

    CAS  Google Scholar 

  2. Angeli TR, O’Grady G, Du P, Paskaranandavadivel N, Pullan AJ, Bissett IP, Cheng LK (2013) Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine. Neurogastroenterol Motil [Epub ahead of print] doi: 10:1111/nmo.12085

  3. Cannon WB (1902) The movements of the intestines studied by means of the Rontgen rays. Am J Physiol 6:251–277

    Google Scholar 

  4. Carlson GM, Bedi BS, Code CF (1972) Mechanism of propagation of intestinal interdigestive myoelectrical complex. Am J Physiol 222:1027–1030

    PubMed  CAS  Google Scholar 

  5. Carlson HC, Code CF, Nelson RA (1966) Motor action of the canine gastroduodenal junction: a cineradiographic, pressure and electric study. Dig Dis Sci 11:155–172

    Article  CAS  Google Scholar 

  6. Christensen J, Schedl HP, Clifton JA (1966) The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men in patients with variety of diseases. Gastroenterology 50:309–315

    PubMed  CAS  Google Scholar 

  7. Code CF, Szurszewski JH (1970) The effect of duodenal and mid small bowel transection on the frequency gradient of the pacesetter potential in the canine small intestine. J Physiol 207:281–289

    PubMed  CAS  Google Scholar 

  8. Code CF, Marlett JA (1975) The interdigestive myo-electric complex of the stomach and small bowel of dogs. J Physiol 246:289–309

    PubMed  CAS  Google Scholar 

  9. Cousins HM, Edwards FR, Hickey H, Hill CE, Hirst GDS (2003) Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum. J Physiol 550:829–844

    Article  PubMed  CAS  Google Scholar 

  10. Diamant NE, Bortoff A (1969) Nature of the intestinal slow-wave frequency gradient. Am J Physiol 216:301–307

    PubMed  CAS  Google Scholar 

  11. Diamant NE, Bortoff A (1969) Effects of transection on the intestinal slow-wave frequency gradient. Am J Physiol 216:734–743

    PubMed  CAS  Google Scholar 

  12. Du P, O’Grady G, Egbuji JU, Lammers WJ, Budgett D, Neilsen P, Windsor JA, Pullan A, Cheng LK (2009) High-resolution mapping of in vitro gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann Biomed Eng 37:839–846

    Article  PubMed  Google Scholar 

  13. Du P, O’Grady G, Cheng LK, Pullan AJ (2010) A multi-scale model of the electrophysiological basis of the human electrogastrogram. Biophys J 99:2784–2792

    Article  PubMed  CAS  Google Scholar 

  14. Egbuji JU, O’Grady G, Du P, Cheng LK, Lammers WJEP, Windsor JA, Pullan AJ (2010) Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol Motil 22:e292–e300

    Google Scholar 

  15. Farrugia G (2008) Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 20:54–63

    Article  PubMed  Google Scholar 

  16. Fleckenstein P, Oigaard A (1978) Electrical spike activity in the human small intestine: a multiple electrode study of fasting diurnal variations. Dig Dis Sci 23:776–780

    Article  CAS  Google Scholar 

  17. Furness JB (2006) The Enteric Nervous System. Wiley-Blackwell, Oxford

    Google Scholar 

  18. Grover M, Farrugia G, Lurken MS et al (2011) Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology 140(1575–85):e8

    PubMed  Google Scholar 

  19. Grundy D, Brookes S (2011) Neural Control of Gastrointestinal Function. Colloquium series on integrated systems physiology: from molecule to function to disease. Morgan & Claypool Life Sciences.

    Google Scholar 

  20. Hasler WL (2006) Small Intestine Motility. Physiology of the Gastrointestinal Tract, Fourth Edition 935–964

    Google Scholar 

  21. Hinder RA, Kelly KA (1977) Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am J Surg 133:29–33

    Article  PubMed  CAS  Google Scholar 

  22. Hirst GD, Edwards FR (2006) Electrical events underlying organized myogenic contractions of the guinea pig stomach. J Physiol 576:659–665

    Article  PubMed  CAS  Google Scholar 

  23. Hocke M, Schone U, Richert H, Gornert P, Keller J, Layer P, Stallmach A (2009) Every slow-wave impulse is associated with motor activity of the human stomach. Am J Physiol Gastrointest Liver Physiol 296:G709–G716

    Article  PubMed  CAS  Google Scholar 

  24. Huizinga JD, Lammers WJEP (2009) Gut peristalsis is coordinated by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol 296:1–8

    Article  Google Scholar 

  25. Huizinga JD, Martz S, Gil V, Wang X, Jimenez M, Parsons S (2011) Two independent networks of interstitial cells of Cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci 5:93

    Article  PubMed  Google Scholar 

  26. Indireshkumar K, Brasseur JG, Faas H, Hebbard GS, Kunz P, Dent J, Feinle C, Li M, Boesiger P, Fried M, Schwizer W (2000) Relative contributions of “pressure pump” and “peristaltic pump” to gastric emptying. Am J Physiol Gastrointest Liver Physiol 278:G604–G616

    PubMed  CAS  Google Scholar 

  27. Kelly KA, Code CF, Elveback LR (1969) Patterns of canine gastric electrical activity. Am J Physiol 217:461–470

    PubMed  CAS  Google Scholar 

  28. Kelly KA, Code CF (1971) Canine gastric pacemaker. Am J Physiol 220:112–118

    PubMed  CAS  Google Scholar 

  29. Kelly KA (1980) Gastric emptying of liquids and solids. Roles of the proximal and distal stomach. Am J Physiol 239:G71–G76

    PubMed  CAS  Google Scholar 

  30. Koh SD, Ward SM, Ordog T, Sanders KM, Horowitz B (2003) Conductances responsible for slow wave generation and propagation in interstitial cells of Cajal. Curr Opin Pharmacol 3:579–582

    Article  PubMed  CAS  Google Scholar 

  31. Lammers WJEP, Al-Kais A, Singh S, Arafat K, el-Sharkawy TY (1993) Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. J Appl Physiol 218:1454–1461

    Google Scholar 

  32. Lammers WJ, el-Kays A, Manefield GW, Arafat K, el-Sharkawy TY (1997) Disturbances in the propagation of the slow wave during acute local ischaemia in the feline small intestine. Eur J of Gastroenterol Hepatol 9:381–388

    Article  CAS  Google Scholar 

  33. Lammers WJ, Slack JR, Stephen B, Pozzan O (2000) The spatial behaviour of spike patches in the feline gastroduodenal junction in vitro. Neurogastroenterol Motil 12:467–473

    Article  PubMed  CAS  Google Scholar 

  34. Lammers WJ, Stephen B, Slack JR, Dhanasekaran S (2002) Anisotropic propagation in the small intestine. Neurogastroenterol Motil 14:357–364

    Article  PubMed  CAS  Google Scholar 

  35. Lammers WJ, Stephen B, Slack JR (2002) Similarities and differences in the propagation of slow waves and peristaltic waves. Am J Physiol Gastrointest Liver Physiol 283:G778–G786

    PubMed  CAS  Google Scholar 

  36. Lammers WJEP, Ver Donck L, Schuurkes JAJ, Stephen B (2003) Longitudinal and circumferential spike patches in the canine small intestine in vivo. Am J Physiol Gastrointest Liver Physiol 285:G1014–G1027

    PubMed  CAS  Google Scholar 

  37. Lammers WJEP, Ver Donck L, Schuurkes JAJ, Stephen B (2005) Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo. Can J Physiol Pharmacol 83:1031–1043

    Article  PubMed  CAS  Google Scholar 

  38. Lammers WJEP (2005) Spatial and temporal coupling between slow waves and pendular contractions. Am J Physiol 289:G898–G903

    Article  CAS  Google Scholar 

  39. Lammers WJ, Stephen B (2008) Origin and propagation of individual slow waves along the intact feline small intestine. Exp Physiol 93:334–346

    Article  PubMed  Google Scholar 

  40. Lammers WJEP, Ver Donck L, Stephen B, Smets D, Schuurkes JAJ (2008) Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135:1601–1611

    Article  PubMed  Google Scholar 

  41. Lammers WJ, Ver Donck L, Stephen B, Smets D, Schuurkes JA (2009) Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am J Physiol Gastrointest Liver Physiol 296:1200–1210

    Google Scholar 

  42. Lammers WJEP, Stephen B, Karam SM (2012) Functional reentry and circus movement arrhythmias in the small intestine of normal and diabetic rats. Am J Physiol 302:G684–G689

    Google Scholar 

  43. Lees-Green R, Du P, O’Grady G, Beyder A, Farrugia G, Pullan AJ (2011) Biophysically based modeling of the interstitial cells of Cajal: current status and future perspectives. Front Physiol 2(29):1–19

    Google Scholar 

  44. Morrison P, Miedema BW, Kohler L, Kelly KA (1990) Electrical dysrhythmias in the roux jejunal limb: cause and treatment. Am J Surg 160:252–256

    Article  PubMed  CAS  Google Scholar 

  45. O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJEP, Windsor JA, Pullan AJ (2010) The origin and propagation of human gastric slow wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol 299:585–592

    Google Scholar 

  46. O’Grady G, Du P, Lammers WJEP, Egbuji JU, Mithraratne P, Chen JDZ, Cheng LK, Windsor JA, Pullan AJ (2010) High-resolution entrainment mapping of gastric pacing: a new analytical tool. Am J Physiol Gastrointest Liver Physiol 298:G314–G321

    Article  PubMed  Google Scholar 

  47. O’Grady G, Egbuji JU, Du P, Lammers WJEP, Cheng LK, Windsor JA, Pullan AJ (2011) High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol Motil 23:e345–e355

    Article  PubMed  Google Scholar 

  48. O’Grady G, Du P, Paskaranandavadivel N, Angeli TR, Lammers WJEP, Farrugia G, Asirvatham SJ, Windsor JA, Pullan AJ, Cheng LK (2012) Rapid high-amplitude cumferential slow wave conduction during normal gastric pacemaking and dysrhythmias. Neurogastroenterol Motil 24(7):e299–312

    Google Scholar 

  49. O'Grady G, Angeli TR, Du P, Lahr C, Lammers WJEP, Windsor JA, Abell TL, Farrugia G, Pullan AJ, Cheng LK (2012) Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143(3):589–598

    Google Scholar 

  50. Parkman HP, Hasler WL, Barnett JL, Eaker EY (2003) Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol Motil 2003:89–102

    Article  Google Scholar 

  51. Sanders KM (2008) Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil 20:39–53

    Article  PubMed  CAS  Google Scholar 

  52. Seidel SA, Hegde SS, Bradshaw A, Ladipo JK, Richards WO (1999) Intestinal tachyarrhythmias during small bowel ischemia. Am J Physiol Gastrointest Liver Physiol 277:G993–G999

    CAS  Google Scholar 

  53. Sha L, Farrugia G, Harmsen WS, Szurszewski JH (2007) Membrane potential gradient is carbon monoxide-dependent in mouse and human small intestine. Am J Physiol 293(2):G438–G445

    CAS  Google Scholar 

  54. Shafik A, Shafik AA, El-Sibai O, Mostafa M (2003) Electrical activity of the colon in subjects with constipation due to total colonic inertia: an electrophysiologic study. Arch Surg 138:1007–1011

    Article  PubMed  Google Scholar 

  55. Suzuki N, Prosser CL, DeVos W (1986) Waxing and waning of slow waves in intestinal musculature. Am J Physiol Gastrointest Liver Physiol 250:G28–G34

    CAS  Google Scholar 

  56. Szurszewski JH (1969) A migrating electric complex of the canine small intestine. Am J Physiol 217:1757–1763

    PubMed  CAS  Google Scholar 

  57. Szurszewski JH, Elveback LR, Code CF (1970) Configuration and frequency gradient of electric slow wave over canine small bowel. Am J Physiol 218:1468–1473

    PubMed  CAS  Google Scholar 

  58. Szurszewski JH, Farrugia G (2004) Carbon monoxide is an endogenous hyperpolarizing factor in the gastrointestinal tract. Neurogastroenterol Motil 16(Suppl 1):81–85

    Article  PubMed  Google Scholar 

  59. van Helden DF, Laver DR, Holdsworth J, Imtiaz MS (2010) The generation and propagation of gastric slow waves. Clin Exp Pharmacol Physiol 37:516–524

    Article  PubMed  Google Scholar 

  60. Verhagen MA, Luijk HD, Samsom M, Smout AJ (1998) Effect of meal temperature on the frequency of gastric myoelectrical activity. Neurogastroenterol Motil 10:175–181

    Article  PubMed  CAS  Google Scholar 

  61. Wang XY, Lammers WJ, Bercik P, Huizinga JD (2005) Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine. Am J Physiol Gastrointest Liver Physiol 289:G539–G549

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

TRA is supported by the Riddet Institute, the Royal Society of NZ, and the NZ Society of Gastroenterology. GOG is supported by the American Neurogastroenterology & Motility Society, the NZ Health Research Council, and the NIH (R01 DK64775).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy R. Angeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Angeli, T.R., O’Grady, G., Lammers, W.J.E.P. (2013). The Electrical Regulation of GI Motility at the Whole-Organ Level. In: Cheng, L., Pullan, A., Farrugia, G. (eds) New Advances in Gastrointestinal Motility Research. Lecture Notes in Computational Vision and Biomechanics, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6561-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6561-0_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6560-3

  • Online ISBN: 978-94-007-6561-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics