Skip to main content

Organic Molecules in Lunar Ice: A Window to the Early Evolution of Life on Earth

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 28))

Abstract

Water ice at the lunar poles likely contains organic molecules that provide insights into the early evolution of life on Earth and cometary composition. In fact, since meteorite impacts on Earth may have delivered biogenic material to the surface of the Moon, this is the only place where we might find clues about prebiotic molecules of early Earth and the early evolution of life. In addition, this water may be utilized as drinking water and oxygen for a future human base on the Moon. Here I outline the rationale for exploring this resource, lay out evidence for large amounts of water ice to be present in the polar areas of the Moon, and provide a first design attempt on how to extract the organic molecules from the lunar ice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

7. References

  • Angelis GD et al (2001) Lunar lava tube radiation safety analysis. DOE low dose radiation research program contractor workshop, Washington, DC

    Google Scholar 

  • Armstrong J, Wells L, Gonzalez G (2002) Rummaging through Earth’s attic for remains of ancient life. Icarus 160:183–196

    Article  CAS  Google Scholar 

  • Arnold JR (1979) Ice in the lunar polar regions. J Geophys Res 84:5659

    Article  Google Scholar 

  • Baker VR et al (2005) Extraterrestrial hydrogeology. Hydrogeol J 13:51–68

    Article  CAS  Google Scholar 

  • Benz W, Slattery WL, Cameron AGW (1986) The origin of the Moon and the single-impact hypothesis I. Icarus 66:515–535

    Article  Google Scholar 

  • Binder AB (1998) Lunar prospector: overview. Science 281:1475–1476

    Article  PubMed  CAS  Google Scholar 

  • Blair BR et al (2002) Space resource economic analysis toolkit: the case for commercial lunar ice mining. Final report to the NASA Exploration Team, CSM/JPL/CSM, SRD Case 1.0, Pasadena, CA

    Google Scholar 

  • Bowman RS et al (1995) Sorption of nonpolar organics, inorganic cations, and inorganic anions by surfactant-modified zeolites. ACS symposium series 594. American Chemical Society, Washington, DC

    Google Scholar 

  • Bowman RS et al (2001) Pilot test of a surfactant-modified zeolite permeable barrier for groundwater remediation. In: Smith JA, Burns S (eds) Physical and chemical remediation of contaminated aquifers. Kluwer Academic/Plenum Publishers, New York, pp 161–185

    Google Scholar 

  • Campbell BA et al (2003) Radar imaging of the lunar poles: long-wavelength measurements reveal a paucity of ice in the Moon’s polar craters. Nature 426:137–138

    Article  PubMed  CAS  Google Scholar 

  • Clark RN (2009) Detection of adsorbed water and hydroxyl on the Moon. Science 326:562–564

    Article  PubMed  CAS  Google Scholar 

  • Crider DH, Vondrak RR (2003) Space weathering of ice layers in lunar cold traps. Adv Space Res 31:2293–2298

    Article  Google Scholar 

  • Elphic RC et al (1998) Lunar Fe and Ti abundances: comparison of Lunar Prospector and Clementine data. Science 281:1493–1496

    Article  PubMed  CAS  Google Scholar 

  • Feldman WC et al (1998a) Major compositional units of the Moon: Lunar Prospector thermal and fast neutrons. Science 281:1489–1493

    Article  PubMed  CAS  Google Scholar 

  • Feldman WC et al (1998b) Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles. Science 281:1496–1500

    Article  PubMed  CAS  Google Scholar 

  • Feldman WC et al (2000) Chemical information content of lunar thermal and epithermal neutrons. J Geophys Res 105(E8):20347–20363

    Article  CAS  Google Scholar 

  • Gustafson RJ (1999) Lunar polar ice methods for mining the new resource for exploration. Space resources utilization roundtable. Colorado School of Mines Golden, CO

    Google Scholar 

  • Heiken G, Vaniman D, French B (1991) Lunar source-book: a user’s guide to the Moon. Cambridge University Press, Cambridge

    Google Scholar 

  • Lawrence DJ et al (1998) Global elemental maps of the Moon: the Lunar Prospector gamma-ray spectrometer. Science 281:1484–1489

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Bowman RS (1998) Sorption of chromate and PCE by surfactant-modified clay minerals. Environ Eng Sci 15:237–245

    Article  Google Scholar 

  • Li Z, Bowman RS (2001) Regeneration of surfactant-modified zeolite after saturation with chromate and perchloroethylene. Water Res 35:322–326

    Article  PubMed  CAS  Google Scholar 

  • Lowman PD (1966) Lunar resources: their value in Lunar and planetary exploration. In: G.S.F. Center, pp 1–36

    Google Scholar 

  • Lowman PD (2000) An astrobiology reconnaissance of the south polar region of the Moon. In: Goddard Space Flight Center (Code 921), Greenbelt, Maryland

    Google Scholar 

  • Lowman PD (2005) International Lunar observatory: suggested instrument complement. In: Goddard Space Flight Center (Code 698), Greenbelt, Maryland

    Google Scholar 

  • Lucey PG (2009) A lunar waterworld. Science 326:531–532

    Article  PubMed  CAS  Google Scholar 

  • Lucey PG, Taylor GJ, Malaret E (1995) Abundance and distribution of iron on the Moon. Science 268:1150–1153

    Article  PubMed  CAS  Google Scholar 

  • Lucey PG, Taylor GJ, Hawke BR (1998) FeO and TiO2 concentrations in the South Pole-Aitken basin: implications for mantle composition and basin formation. J Geophys Res 103(E2):3701–3708

    Article  CAS  Google Scholar 

  • Mattson ED, Bowman R, Lindgren ER (2000) Sustained electrokinetic remediation in unsaturated soils using surfactant-coated electrodes. J Environ Eng 126:534–540

    Article  CAS  Google Scholar 

  • NASA (2010) NASA radar finds ice deposits at Moon’s north pole. http://www.nasa.gov/mission_pages/Mini-RF/multimedia/feature_ice_like_deposits.html. Retrieved 16 Mar 2012

  • Nozette S et al (1996) The Clementine bistatic radar experiment. Science 274:1495–1498

    Article  PubMed  CAS  Google Scholar 

  • Pieters CM et al (2009) Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326:568–572

    Article  PubMed  CAS  Google Scholar 

  • Ranck JM, Bowman RS, Weber JL, Katz LE, Sullivan EJ (2005) BTEX removal from produced water using surfactant-modified zeolite. J Environ Eng 131:434–442

    Article  CAS  Google Scholar 

  • Salazar CM (2006) Evaluation of surfactant-modified zeolites for control of cryptosporidium and giardia species in drinking water. M.S. thesis, New Mexico Tech, Socorro, New Mexico, 93 p

    Google Scholar 

  • Schulze-Makuch D et al (2002) Surfactant-modified zeolite can protect drinking water wells from viruses and bacteria. EOS 83:193–201

    Article  Google Scholar 

  • Schulze-Makuch D, Bowman RS, Pillai SD, Guan H (2003) Field evaluation of the effectiveness of surfactant modified zeolite and iron-oxide-coated sand for removing viruses and bacteria from ground water. Ground Water Monit Remediat 23:68–74

    Article  CAS  Google Scholar 

  • Schulze-Makuch D et al (2005) Venus, Mars, and the ices on Mercury and the Moon: astrobiological implications and proposed mission designs. Astrobiology 5:778–795

    Article  PubMed  CAS  Google Scholar 

  • Spudis PD (2001) What is the Moon made of? Science 293:1779–1781

    Article  PubMed  CAS  Google Scholar 

  • Spudis PD, Reisse RA, Gillis JL (1994) Ancient multiringed basins on the Moon revealed by Clementine laser altimetry. Science 266:1848–1851

    Article  PubMed  CAS  Google Scholar 

  • Stacy NJS, Campbell DB, Ford PG (1997) Arecibo radar mapping of the lunar poles: a search for ice deposits. Science 276:1527–1530

    Article  CAS  Google Scholar 

  • Stump WR et al (1988) Conceptual design of a Lunar oxygen pilot plant: Lunar base systems study (LBSS), Task 4.2, Houston, TX

    Google Scholar 

  • Vondrak RR, Crider DH (2003) Ice at lunar poles. Am Sci 91:322–329

    Google Scholar 

  • Watson K, Murray BC, Brown H (1961) The behavior of volatiles on the lunar surface. J Geophys Res 66:3033–3045

    Article  Google Scholar 

  • Weidenschilling SJ et al (1997) Technical comments: the possibility of ice on the Moon. Science 278:144–145

    Article  CAS  Google Scholar 

  • Whitlock DR (1999) Recovery of Lunar ice with separation technologies’ belt separator, space resources utilization roundtable. Colorado School of Mines Golden, CO

    Google Scholar 

  • Zubrick JW (ed) (2000) The organic chem lab survival manual. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schulze-Makuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schulze-Makuch, D. (2013). Organic Molecules in Lunar Ice: A Window to the Early Evolution of Life on Earth. In: de Vera, JP., Seckbach, J. (eds) Habitability of Other Planets and Satellites. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6546-7_7

Download citation

Publish with us

Policies and ethics