Exoplanets: Criteria for their Habitability and Possible Biospheres

  • John Lee Grenfell
  • Heike Rauer
  • Philip von Paris
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 28)


The word “habitable” is derived from the classical Latin habitabilis (to inhabit, to dwell). As early as 1853, William Whewell introduced the notion of a planet orbiting in the “temperate zone” where liquid water (an essential requirement for all life on Earth) on the surface is favored. A century later, astronomer Harlow Shapley (1953) discussed climate conditions for planets orbiting in the so-called water belt in the context of understanding Earth’s climate change. In the same year, Hubertus Strughold investigated the Solar System “ecosphere” (1953) as part of a physiological study of survival on Mars. Huang (1960) discussed the requirements a star should fulfill to support life in its so-called Habitable Zone (HZ). Dole (1964) then discussed the “complex life HZ,” the region where a planet has surface temperatures from 0 to 30 ;°C over >10 ;% of its surface, an oxygen (O2)-rich atmosphere and <1.5 Earth’s gravity. Hart (1979a, b) applied a numerical climate model to estimate the width of the HZ for liquid water and showed that runaway climate processes implied a thin HZ extending from 0.95 to 1.01 astronomical units (AU). Schneider and Thompson (1980), however, argued that understanding of complex climate feedbacks (e.g., between atmosphere and glaciation) suggested that such climate estimates are only “order of magnitude.” Kasting et al. (1988) showed that including long-term negative climate feedbacks such as the carbonate-silicate cycle could stabilize a planet’s climate and expand the HZ width calculated by the Hart et al. studies. A key study by Kasting et al. (1993) subsequently investigated the HZ width for a range of main sequence stars. In the modern literature, the HZ is widely studied, including models with, for example, complex climate feedbacks, interactive atmospheric climate-chemistry (e.g., Segura et al., 2003; Grenfell et al., 2007a), radiative effects of clouds (Kitzmann et al., 2011), climate dependence on planetary orbit (e.g., Williams and Pollard, 2003), the effect of 3D planetary properties such as ocean mass and albedo (e.g., Abe et al., 2011), and investigation of climate and evolution (e.g., Selsis et al., 2007; Wordsworth et al., 2011).


Solar System Liquid Water Main Sequence Star Planetary Atmosphere Astronomical Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

10. References

  1. Abe A, Abe-Ouchi A, Sleep NH, Zahnle KJ (2011) Habitable zone limits for dry planets. Astrobiology 11(5):443–460PubMedCrossRefGoogle Scholar
  2. Agol E (2011) Transit surveys for Earths in the habitable zones of white dwarfs. Astrophys J 731:L31CrossRefGoogle Scholar
  3. Bolmont E, Raymond SN, Leconte J (2011) Tidal evolution of planets around brown dwarfs. Astron Astrophys 535:A94CrossRefGoogle Scholar
  4. Bonfils X, Delfosse X, Udry S, Forveille T, Mayor M et al. The HARPS search for southern extrasolar planets, I. The M dwarf sample. Astron Astrophys 549:A109Google Scholar
  5. Borucki WJ, Koch DG, Batalha N, Bryson ST, Caldwell DA et al (2012) Kepler 22b: A 2.4 Earth-radius planet in the habitable zone of a sun-like star. Astrophys J 745(2). doi: 10.1088/0044-637X/745/2/120
  6. Brandenburg A, Lehto HJ, Lehto KM (2007) Homochirality in an early peptide world. Astrobiology 7:725–732PubMedCrossRefGoogle Scholar
  7. Chapman SA (1930) Theory of upper-atmospheric ozone. Mem R Meteorol Soc 3(26):103–125Google Scholar
  8. Chassefière E, Wieler R, Marty B, Leblanc F (2012) The evolution of Venus: present state of knowledge and future exploration. Planet Space Sci 63:15–23CrossRefGoogle Scholar
  9. Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 320–325Google Scholar
  10. Dole SH (ed) (1964) Habitable planets for man, 1st edn. Blaisdell Publishing Company, New York. ISBN 0-444-00092-5Google Scholar
  11. Estupiñan EG, Nicovich JM, Li D, Cunnold DM, Wine PH (2002) Investigation of N2O production from 266 and 532 nm laser flash photolysis of O3/N2/O2 mixtures. J Phys Chem A 106:5880–5890CrossRefGoogle Scholar
  12. Fast KE, Kostiuk T, Lefevre F, Hewagama T, Livengood TA, Delgado JD, Annen J, Sonnabend G (2009) Comparison of HIPWAC and Mars Express SPICAM observations of ozone on Mars 2006–2008 and variation from 1993 IRHS observations. Icarus 203(1):20–27CrossRefGoogle Scholar
  13. Forget F, Pierrehumbert RT (1997) Warming early Mars with CO2 clouds which scatter IR radiation. Science 278:1273–1276PubMedCrossRefGoogle Scholar
  14. Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306(5702):1758–1761PubMedCrossRefGoogle Scholar
  15. Goldblatt C, Matthews AJ, Claire MW, Lenton TM, Watson AJ, Zahnle KJ (2009) Nitrogen enhanced greenhouse warming on early Earth. Nature Geosci 8:91–96Google Scholar
  16. Gough DO (1981) Solar interior structure and luminosity variations. Sol Phys 74:21–34CrossRefGoogle Scholar
  17. Grenfell JL, Stracke B, von Paris P, Patzer ABC, Titz R, Segura A, Rauer H (2007a) The response of atmospheric chemistry on Earth-like planets around F, G and K stars to small variations in orbital distance. Planet Space Sci 55:661–671CrossRefGoogle Scholar
  18. Grenfell JL, Griessmeier J-M, Patzer B, Rauer H, Segura A, Stadelmann A, Stracke B, Titz R, von Paris P (2007b) Biomarker response to galactic cosmic ray-induced NOx and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an M-dwarf star. Astrobiology 7:1. doi: 10.1089/ast.2006.0129 CrossRefGoogle Scholar
  19. Grenfell JL, Gebauer S, von Paris P, Godolt M, Hedelt P, Patzer ABC, Stracke B, Rauer H (2011) Sensitivity of biomarkers to changes in chemical emissions in Earth’s Proterozoic atmosphere. Icarus 211:81–88CrossRefGoogle Scholar
  20. Haagen-Smit AJ (1952) Chemistry and physiology of Los Angeles Smog. Ind Eng Chem 44:1342–1346CrossRefGoogle Scholar
  21. Haghighipour N (ed) (2010) Planets in binary star systems, 1st edn. Springer, Dordrecht/London. ISBN 978-90-481-8686-0Google Scholar
  22. Hart MH (1979a) The evolution of the atmosphere of the Earth. Icarus 33:23–39CrossRefGoogle Scholar
  23. Hart MH (1979b) Habitable zones around main sequence stars. Icarus 37:351CrossRefGoogle Scholar
  24. Huang SS (1960) Life outside the solar system. Sci Am 202:55–63CrossRefGoogle Scholar
  25. IPCC (2001) International Panel on Climate Change (IPCC) Third Assessment Report (TAR), Climate change 2001Google Scholar
  26. Irwin LN, Schulze-Makuch D (2011) Cosmic biology, Springer praxis books. Springer, New York, pp 153–172CrossRefGoogle Scholar
  27. Joshi M (2003) Climate model studies of synchronously rotating planets. Astrobiology 3(2):415–427PubMedCrossRefGoogle Scholar
  28. Joshi MM, Haberle RM (2012) Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and subsequent widening of the habitable zone. Astrobiology 12(1):3–8PubMedCrossRefGoogle Scholar
  29. Kaltenegger L, Sasselov D (2011) Exploring the habitable zone for Kepler planetary candidates. Astrophys J Lett 736:L25. doi: 10.1088/2041-8205/736/2/L25 CrossRefGoogle Scholar
  30. Kaltenegger L, Traub WA, Jucks KW (2007) Spectral evolution of an Earth-like planet. Astrophys J 658:598–616CrossRefGoogle Scholar
  31. Kaltenegger L, Segura A, Mohanty S (2011) Model spectral of the first potentially-habitable Super-Earth. Astrophys J 733:1–12CrossRefGoogle Scholar
  32. Kasting JF, Toon OB, Pollack JB (1988) How climate evolved on the terrestrial planets. Sci Am 256:90–97PubMedCrossRefGoogle Scholar
  33. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108PubMedCrossRefGoogle Scholar
  34. Keller CU, Stam DM (2012) Planetary science: in search of biosignatures. Nature 483:38–39PubMedCrossRefGoogle Scholar
  35. Keppler F, Harper DB, Röckmann T, Moore RM, Hamilton JTG (2005) New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos Chem Phys 5:2403–2411CrossRefGoogle Scholar
  36. Kite E, Gaidos E, Manga M (2011) Climate instability on tidally-locked exoplanets. Astrophys J 743(1):1–12CrossRefGoogle Scholar
  37. Kitzmann D, Patzer ABC, von Paris P, Godolt M, Stracke B, Gebauer S, Grenfell JL, Rauer H (2010) Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones. Astron Astrophys 511:A66CrossRefGoogle Scholar
  38. Kitzmann D, Patzer ABC, von Paris P, Godolt M, Rauer H (2011) Clouds in the atmospheres of extrasolar planets. III. Impact of low and high-level clouds on the reflection spectra of Earth-like planets. Astron Astrophys 534. doi: 10.105/0004-6361/201117375
  39. Kleidon A (2012) How does the Earth system generate and maintain thermodynamic equilibrium and what does it imply for the future of the planet? Philos Trans R Soc A 370(1962):1012–1040CrossRefGoogle Scholar
  40. Lammer H, Selsis F, Penz T, Amestorfer UV, Lichtenegger HIM, Kolb C, Ribas I (2005) Chapter 2: Atmospheric evolution and the history of water on Mars. In: Tokano T (ed) Water on Mars and life. Springer, BerlinGoogle Scholar
  41. Lammer H et al (2009) What makes a planet habitable? Astron Astrophys Rev 17:181–249. doi: 10.1007/s00159-009-0019-z CrossRefGoogle Scholar
  42. Lorenz RD, Lunine JD, McKay CP (1997) Titan under a red giant sun: a new kind of “habitable” moon. Geophys Res Lett 24(22):2905–2908PubMedCrossRefGoogle Scholar
  43. Lovelock J (1965) A physical basis for life detection experiments. Nature 207:568–570PubMedCrossRefGoogle Scholar
  44. Mayor M, Bonfils X, Forveille T et al (2009) GJ581 radial velocity curve. Astron Astrophys 507:487CrossRefGoogle Scholar
  45. Montmessin F, Bertaux J-L, Lefevre F, Marcq E, Belyaev D, Gerard J-C, Korablev O, Fedorova A, Sarago V, Vandaele AC (2011) A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216(1):82–85CrossRefGoogle Scholar
  46. Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, Disanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in Northern Summer 2003. Science 323:1041–1045PubMedCrossRefGoogle Scholar
  47. Neubauer D, Vrtala A, Leitner JJ, Ferneis MG, Hitzenberger R (2011) Development of a model to compute the extension of life supporting zones for Earth-like exoplanets. Orig Life Evol Biosph 41(6):545–552PubMedCrossRefGoogle Scholar
  48. Ohkouchi N, Tayasu I, Koba K (eds) (2010) Earth, life and isotopes. Kyoto University Press, KyotoGoogle Scholar
  49. Pavlov AA et al (2003) Methane-rich proterozoic atmosphere? Geology 31:87–90CrossRefGoogle Scholar
  50. Pepe F, Lovis C, Segransan D, Benz W, Bouchy F, Dumusque X, Mayor M, Queloz D, Santons NC, Udry S (2011) The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD20794, HD85512, and HD192310. Astron Astrophys 534:A58CrossRefGoogle Scholar
  51. Pierrehumbert R, Gaidos S (2011) Hydrogen greenhouse planets beyond the habitable zone. Astrophys J 734:L13CrossRefGoogle Scholar
  52. Quarles B, Musielak ZE, Cuntz M (2012) Habitability of Earth-mass planets and moons in the Kepler-16 system. Astrophys J 750:1CrossRefGoogle Scholar
  53. Rauer H, Gebauer S, von Paris P, Cabrera J, Godolt M, Grenfell JL, Belu A, Selsis F, Hedelt P, Schreier F (2011) Potential biosignatures in super-Earth atmospheres I. Spectral appearance of super-Earths around M-dwarfs. Astron Astrophys 529:A8CrossRefGoogle Scholar
  54. Sagan C, Salpeter EE (1976) Particles, environments and possible ecologies in the Jovian atmosphere. Astrophys J Suppl 32:737CrossRefGoogle Scholar
  55. Sagan C, Thompson WR, Carlson R, Gurnett D, Hord C (1993) A search for life from Earth on the Galileo spacecraft. Nature 365(6448):715–721PubMedCrossRefGoogle Scholar
  56. Scalo J, Kaltenegger L, Segura A, Fridlund M, Ribas I et al (2007) A re-appraisal of the habitability of planets around M-dwarf stars. Astrobiology 7:30–65PubMedCrossRefGoogle Scholar
  57. Schneider S, Thompson SL (1980) Cosmic conclusions from climatic models: can they be justified? Icarus 41(3):456–469CrossRefGoogle Scholar
  58. Schulze-Makuch D, Irwin LN, Guan H (2002) Search parameters for the remote detection of extraterrestrial life. Planet Space Sci 50:675–683CrossRefGoogle Scholar
  59. Seager S, Turner EL, Schafer J, Ford EB (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial planets. Astrobiology 5(3):372–390PubMedCrossRefGoogle Scholar
  60. Segura A, Krelove K, Kasting JF, Sommerlatt D, Meadows V, Crisp D, Cohen M, Mlawer E (2003) Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3:689–708PubMedCrossRefGoogle Scholar
  61. Segura A, Kasting JF, Meadows V, Cohen M, Scalo J, Crisp D, Butler RAH, Tinetti G (2005) Biosignatures from Earth-like planets around M-dwarfs. Astrobiology 5(6):706–715PubMedCrossRefGoogle Scholar
  62. Segura A, Meadows V, Kasting JF, Crisp D, Cohen M (2007) Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres. Astrobiology 472:665–679Google Scholar
  63. Segura A, Walkowicz LM, Meadows V, Kasting J, Hawley S (2010) The effect of a strong stellar flare on the atmospheric chemistry of an Earth-like planet orbiting an M-dwarf. Astrobiology 10(7):751–771. doi: 10.1089/ast.2009.0376 PubMedCrossRefGoogle Scholar
  64. Selsis F, Despois D, Parisot J-P (2002) Signature of life on exoplanets – can Darwin produce false detections? Astron Astrophys 388:985–1003CrossRefGoogle Scholar
  65. Selsis F, Kasting JF, Levrard B, Paillet J, Ribas I, Delfosse X (2007) Habitable planets around the star Gliese 581? Astron Astrophys 1373Google Scholar
  66. Shapley H (1953) Climatic change – evidence, causes, and effects. Harvard University Press, Cambridge, 318 ppGoogle Scholar
  67. Simoneit BRT (2004) Biomarkers (molecular fossils) as geochemical indicators of life. Adv Space Res 33(8):1255–1261CrossRefGoogle Scholar
  68. Som SM, Catling DC, Harnmeijer JP, Polivka JP, Buick R (2012) Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature 484:359–362. doi: 10.1038/nature10890 PubMedCrossRefGoogle Scholar
  69. Stern A (2003) Delayed gratification zones: when deep outer solar system regions become balmy during post main-sequence stellar evolution. Astrobiology 3(2):317–321PubMedCrossRefGoogle Scholar
  70. Sterzik MF, Bagnulo S, Palle E (2012) Biosignatures as revealed by spectropolarimetry of Earthshine. Nat Lett 483:64–66CrossRefGoogle Scholar
  71. Strughold H (1953) The green and red planet: a physiological study of the possibility of life on Mars. JAMA 153(15):1410. doi: 10.1001/jama.1953.02940320082032 Google Scholar
  72. Udry S, Bonfils X, Delfosse X et al (2007) Super-Earths (5 and 8 ME) in a 3-planet system. Astron Astrophys 469:L43CrossRefGoogle Scholar
  73. von Braun K et al (2011) 55 Cancri: stellar astrophysical parameters, a planet in the habitable zone, and implications for the radius of a transiting Super-Earth. Astrophys J 740:49CrossRefGoogle Scholar
  74. von Paris P, Rauer H, Grenfell JL, Patzer ABC, Hedelt P, Stracke B, Trautmann T, Schreier F (2008) Warming the early Earth – CO2 reconsidered. Planet Space Sci 56(9):1244–1259CrossRefGoogle Scholar
  75. von Paris P, Gebauer S, Godolt M, Grenfell JL, Hedelt P, Kitzmann D, Patzer ABC, Rauer H, Stracke B (2010) The extrasolar planet GL 581d: a potentially habitable planet? Astron Astrophys 522:A23CrossRefGoogle Scholar
  76. Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86(1):147–158Google Scholar
  77. Williams DM, Pollard D (2003) Extraordinary climates of earth-like planets: three-dimensional climate simulations at extreme obliquity. Int J Astrobiol 2:1–19CrossRefGoogle Scholar
  78. Woolf NJ, Smith PS, Traub WA, Jucks KW (2002) The spectrum of Earthshine: a pale blue dot observed from the ground. Astrophys J 574(1):430CrossRefGoogle Scholar
  79. Wordsworth RD, Forget F, Selsis F, Millour E, Charnay B, Madeleine J-B (2011) Gliese 581d is the first discovered terrestrial-mass exoplanet in the habitable zone. Astrophys J 733(2):L48CrossRefGoogle Scholar
  80. Zahnle K, Freedman RS, Catling DC (2011) Is there methane on Mars? Icarus 212:493–503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • John Lee Grenfell
    • 1
  • Heike Rauer
    • 1
    • 2
  • Philip von Paris
    • 2
    • 3
    • 4
  1. 1.Zentrum für Astronomie und AstrophysikTechnische Universität Berlin (TUB)BerlinGermany
  2. 2.Institut für PlanetenforschungDeutsches Zentrum für Luft- und Raumfahrt (DLR)BerlinGermany
  3. 3.University of Bordeaux, LAB, UMR 5804FloiracFrance
  4. 4.CNRS, LAB, UMR 5804FloiracFrance

Personalised recommendations