Advertisement

Application of Raman Spectroscopy as In Situ Technology for the Search for Life

  • Ute Böttger
  • Jean-Pierre De Vera
  • Antje Hermelink
  • Jörg Fritz
  • Iris Weber
  • Dirk Schulze-Makuch
  • Heinz-Wilhelm Hübers
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 28)

Abstract

In preparation to future space missions it is necessary to study the circumstances when faced with performing Raman measurements in a non-Earth like environment. The differences and difficulties compared to the established measurement approaches on Earth need to be recognized and solutions must be found. As an example for extraterrestrial application Raman spectroscopy with the same specifications as those onboard the future ExoMars mission are conducted to test their potential of identifying biological material on martian analogue samples. Appropriate measurement parameters for the detection of biological material as well as for the determination of the mineral composition are derived.

Keywords

Raman Spectrum Raman Spectroscopy Acquisition Time Raman Measurement Short Acquisition Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

7. References

  1. Böttger U, de Vera J-P, Fritz J, Weber I, Hübers H-W, Schulze-Makuch D (2012) Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet Space Sci 60:356–362CrossRefGoogle Scholar
  2. Chevrier V, Mathé P (2007) Mineralogy and evolution of the surface of Mars: a review. Planet Space Sci 55:289–314CrossRefGoogle Scholar
  3. Edwards H, Wynn-Williams D, Villar S (2004) Biological modification of haematite in Antarctic cryptoendolithic communities. J Raman Spectrosc 35:470CrossRefGoogle Scholar
  4. Edwards H, Villar S, Parnell J, Cockell C, Lee P (2005) Raman spectroscopic studies of cyanobacterial gypsum halotrophs and their relevance for sulfate deposits on Mars. Analyst 130:917PubMedCrossRefGoogle Scholar
  5. Ferrari F, Szuszkiewicz E (2009) Cosmic rays: a review for astrobiologists. Astrobiology 9:413–436PubMedCrossRefGoogle Scholar
  6. Gooding J (1978) Chemical weathering on Mars. Thermodynamic stabilities of primary minerals (and their alteration) from mafic igneous rocks. Icarus 33:483–513CrossRefGoogle Scholar
  7. Hermelink A, Brauer A, Lasch P, Naumann D (2009) Phenotypic heterogeneity within microbial populations at the single cell level investigated by confocal Raman microspectroscopy. Analyst 134:1149–1153PubMedCrossRefGoogle Scholar
  8. Lichtenthaler H (2004) Evolution of carotenoid and isoprenoid biosynthesis in photosynthetic and non-photosynthetic organisms. In: 16th international plant lipid symposium, BudapestGoogle Scholar
  9. Maquelin K, Choo-Smith LP, Endtz HP, Bruining HA, Puppels GJ (2002) Rapid identification of Candida species by confocal Raman microspectroscopy. J Clin Microbiol 40:594–600PubMedCrossRefGoogle Scholar
  10. McMillan PF, Dubessy J, Hemley R (1996) Applications in Earth, planetary and environmental sciences. In: Turell G, Corset J (eds) Raman microscopy – developments and applications. Academic, London, pp 289–365CrossRefGoogle Scholar
  11. Meyer C, Fritz J, Misgaiski M, Stöffler D, Artemieva NA, Hornemann U, Moeller R, de Vera J-P, Cockell C, Horneck G, Ott S, Rabbow R (2011) Shock experiments in support of the Lithopanspermia theory: the influence of host rock composition, temperature and shock pressure on the survival rate of endolithic and epilithic microorganisms. Meteorit Planet Sci 46:701–718CrossRefGoogle Scholar
  12. Morris RV, Ruff SW, Douglas RG, Ming W, Arvidson RE, Clark BC, Golden CD, Siebach K, Klingelhöfer G, Schröder C, Fleischer I, Yen A, Squyres SW (2010) Identification of carbonate-rich outcrops on Mars by the spirit rover. Science 329:421PubMedCrossRefGoogle Scholar
  13. Mustard JF, Ehlmann BL, Murchie SL, Poulet F, Mangold N, Head JW, Bibring J-P, Roach LH (2009) Composition morphology and stratigraphy of Noachian crust around the Isidis basin. J Geophys Res 114:E00D12CrossRefGoogle Scholar
  14. Naumann D, Helm D, Labischinski H (1991) Microbiological characterization by FT-IR spectroscopy. Nature 351:81–82PubMedCrossRefGoogle Scholar
  15. Naumann D, Keller S, Helm D, Schultz C, Schrader B (1995) FT-IR and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. J Mol Struct 347:399–406CrossRefGoogle Scholar
  16. Nymmik R (2006) Initial conditions for radiation analysis: models of galactic cosmic rays and solar particle events. Adv Space Res 38:1182–1190CrossRefGoogle Scholar
  17. Poulet F, Bibring J-P, Mustard JF, Gendrin A, Mangold N, Langevin Y, Arvidso RE, Gondet B, Gomez C (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623–627PubMedCrossRefGoogle Scholar
  18. Schulze-Makuch D, Fairén A, Davila A (2008) The case for life on Mars. Int J Astrobiol 7(2):117–141CrossRefGoogle Scholar
  19. Stackebrandt E (2004) The phylogeny and classification of anaerobic bacteria. In: Nakano MM, Zuber P (eds) Strict and facultative anaerobes: medical and environmental aspects. Horizon Bioscience, Wymondham, pp 1–26Google Scholar
  20. Vitek P, Jehlicka J, Edwards HGM, Osterrothova K (2009) Identification of beta-carotene in an evaporitic matrix-evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal Bioanal Chem 393:1967–1975PubMedCrossRefGoogle Scholar
  21. Westall F (2013) Microbial scale habitability on Mars. In: de Vera JP, Seckbach J (eds) Habitability of other planets and satellites. Cellular origins, life in extreme habitats and astrobiology. Springer (this issue)Google Scholar
  22. Wynn-Williams D, Edwards HGM (2000) Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial Antarctic habitats and Mars analogs. Icarus 144:486–503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ute Böttger
    • 1
  • Jean-Pierre De Vera
    • 1
  • Antje Hermelink
    • 2
  • Jörg Fritz
    • 3
  • Iris Weber
    • 4
  • Dirk Schulze-Makuch
    • 5
  • Heinz-Wilhelm Hübers
    • 1
    • 6
  1. 1.Experimental Planetary PhysicsGerman Aerospace Center DLR e.V., Institute of Planetary ResearchBerlinGermany
  2. 2.Zentrum für Biologische Sicherheit (ZBS6)Biomedical Spectroscopy, Robert Koch InstitutBerlinGermany
  3. 3.Leibniz Institute for Research on Evolution and Biodiversity, Museum für NaturkundeBerlinGermany
  4. 4.Geological PlanetologyInstitut für PlanetologieMünsterGermany
  5. 5.School of Earth and Environmental SciencesWashington State UniversityPullmanUSA
  6. 6.Technische Universität BerlinInstitut für Optik und Atomare PhysikBerlinGermany

Personalised recommendations