Microbial Scale Habitability on Mars

  • Frances Westall
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 28)


Habitability can be defined on many scales. The early Earth was globally habitable because of its global ocean, but early Mars was not. Relatively dry conditions appear to have reigned on Mars throughout its history, but, from a microbial point of view, the necessary conditions for the appearance of life were still theoretically possible. The lack of connectivity between potential habitats in time and space may have resulted in life appearing and disappearing simultaneously in different geographical locations. The absence of habitable environments on geologically long timescales of 100s My together with the likelihood that lakes and seas were covered by ice are inhibiting factors for the evolution of photosynthesis. Martian life thus probably remained in a primitive chemotrophic form. Nevertheless, established life could have colonized newly formed habitats, even on an ephemeral basis, providing that viable cells could be transported into the habitats. For in situ missions and the search for Martian life, its heterogeneous distribution implies that the search for past traces of life will be challenging, but such environments do exist.


Liquid Water Landing Site Martian Atmosphere Deinococcus Radiodurans Hydrothermal Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

4. References

  1. Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422PubMedCrossRefGoogle Scholar
  2. Allen CC, Albert FG, Chafetz HS, Combie J, Graham CR, Kieft TL, Kivett SJ, McKay DS, Steele A, Taunton AE, Taylor MR, Thomas-Keprta KL, Westall F (2000) Microscopic physical biomarkers in carbonate hot springs: implications in the search for life on Mars. Icarus 147:49–67PubMedCrossRefGoogle Scholar
  3. Allen CC, Oehler D (2008) A case for ancient springs in Arabia Terra, Mars. Astrobiology 8:1093–1112PubMedCrossRefGoogle Scholar
  4. Allen CC, Probst LW, Flood BE, Longazo TG, Schelble RT, Westall F (2004) Meridiani Planum hematite deposit and the search for evidence of life on Mars – iron mineralization of microorganisms in rock varnish. Icarus 171:20–30CrossRefGoogle Scholar
  5. Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Kanik I (2009) Controls on development and diversity of early Archean stromatolites. Proc Natl Acad Sci 106:9548–9555PubMedCrossRefGoogle Scholar
  6. Amils R, Gonzalez-Toril E, Fernadez-Remolar D, Gomez F, Aguilera A, Rodriguez N, Garcia-Moyano A, Fairen AG, de la Fuente V, Sanz JL (2007) Extreme environments as Mars terrestrial analogs: the Rio Tinto case. Planet Space Sci 55:370–381CrossRefGoogle Scholar
  7. Andrews-Hanna JC, Lewis KW (2011) Early mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. J Geophys Res 116:E02007CrossRefGoogle Scholar
  8. Andrews-Hanna JC, Soto A, Richardson MI (2012) The hydrologic and climatic context of the Gale Crater sedimentary mound. In: Abstracts of the 3rd conference on Early Mars, # 7038. LPI, HoustonGoogle Scholar
  9. Bibring J-P, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthé M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307:1576–1581PubMedCrossRefGoogle Scholar
  10. Bibring J-P, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F, The OMEGA Team (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312:400–404PubMedCrossRefGoogle Scholar
  11. Biemann K, Oro J, Toulmin P III, Orgel LE, Nier AO, Anderson DM, Simmonds PG, Flory D, Diaz AV, Rushneck DR, Biller JA (1976) Search for organic and volatile inorganic compounds in two surface samples from the Chryse Planitia region of Mars. Science 194:72–76PubMedCrossRefGoogle Scholar
  12. Blank JG, Green SJ, Blake D, Valley JW, Kita NT, Treiman A, Dobson PF (2009) An alkaline spring system within the Del Puerto Ophiolite (California, USA): a Mars analogue site. Planet Space Sci 57:533–540Google Scholar
  13. Buffett BA (2003) The thermal state of Earth’s core. Science 299:1675–1676PubMedCrossRefGoogle Scholar
  14. Burr DM, McEwan AS, Sakimoto SE (2002) Recent aqueous floods from the Cerberus Fossae, Mars. Geophys Res Lett 29. doi: 10.1029/2001G1013345
  15. Cady SL, Farmer JD (1996) Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. In: Bock GR, Goode JA (eds) Evolution of hydrothermal ecosystems on Earth (and Mars?), Ciba foundation symposium 202. Wiley, Chichester, pp 150–173Google Scholar
  16. Carr M (2006) The surface of Mars. Cambridge University Press, CambridgeGoogle Scholar
  17. Carr MH, Head JW (2010) Geologic history of Mars. Earth Planet Sci Lett 294:185–203CrossRefGoogle Scholar
  18. Carter J, Poulet F, Bibring J-P, Murchie S, Langevin Y, Mustard J, Gondet B (2009) Phyllosilicates and other hydrated minerals on Mars: 1. Global distribution as seen by MEX OMEGA [abstract 2028]. In: Abstracts of the 40th lunar and planetary science conference, Lunar and Planetary Institute, HoustonGoogle Scholar
  19. Cavalazzi B, Westall F, Barbieri R, Foucher F, Cady S (2011) Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern North Atlantic Ocean. Astrobiology 11:619–632PubMedCrossRefGoogle Scholar
  20. Ciobanu M-C (2012) Biophère de subsurface de marges continentals: diversité, étendue et lien avec le paléoenvironment PhD thesis, University of Brest (Unpublished)Google Scholar
  21. Clark BC, Morris RV, McLennan SM, Gellert R, Jolliff B, Knoll AH, Squyres SW, Lowenstein TK, Ming DW, Tosca NJ, Yen A, Christensen PR, Gorevan S, Brückner J, Calvin W, Dreibus G, Farrand W, Klingelhoefer G, Waenke H, Zipfel J, Bell JF III, Grotzinger J, McSween HY, Rieder R (2005) Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet Sci Lett 240:73–94CrossRefGoogle Scholar
  22. Clifford SM (1993) A model for the hydrologic and climatic behavior of water on Mars. J Geophys Res 98:10,973–11,016CrossRefGoogle Scholar
  23. Clifford SM, Parker TJ (2001) The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154:40–79CrossRefGoogle Scholar
  24. Cockell CS, Raven JA (2004) Zones of photosynthetic potential on Mars and the early Earth. Icarus 169:300–310CrossRefGoogle Scholar
  25. Cockell CS, Catling DC, Davis WL, Snook K, Kepner RL, Lee P, McKay CP (2000) The ultraviolet environment of Mars: biological implications past, present and future. Icarus 146:343–359PubMedCrossRefGoogle Scholar
  26. Cockell CS, Lee P, Osinski G, Horneck G, Broady P (2002) Impact-induced microbial endolithic habitats. Meteorit Planet Sci 37:1287–1298CrossRefGoogle Scholar
  27. Cockell CS, Balme M, Bridges JC, Davilad A, Schwenzer SP (2012) Uninhabited habitats on Mars. Icarus 217:184–193CrossRefGoogle Scholar
  28. Cox MM, Battista JR (2005) Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol 3:882–892PubMedCrossRefGoogle Scholar
  29. Craddock RA, Howard AD (2002) The case for rainfall on a warm, wet early Mars. J Geophys Res 107(E11). doi: 10.1029/2001JE001505
  30. Cull SC, Arvidson RE, Catalano JG, Ming DW, Morris RV, Mellon MT, Lemmon M (2010) Concentrated perchlorate at the Mars Phoenix landing site: evidence for thin film liquid water on Mars. Geophys Res Lett 37:L22203Google Scholar
  31. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedCrossRefGoogle Scholar
  32. DasSarma P, DasSarma S (2008) On the origin of prokaryotic “species”: the taxonomy of halophilic Archaea. Saline Syst 4:5PubMedCrossRefGoogle Scholar
  33. Deamer D, Dworkin JP, Sandford SA, Bernstein MP, Allamandola LJ (2002) The first cell membranes. Astrobiology 2:371–381PubMedCrossRefGoogle Scholar
  34. Derenne S, Robert F, Skryzpczak-Bonduelle A, Gourier D, Binet L, Rouzaud J-N (2008) Molecular evidence for life in the 3.5 billion-year old Warreawoona chert. Earth Planet Sci Lett 272:476–480CrossRefGoogle Scholar
  35. Ehlmann BL, Mustard J, Murchie SL, Poulet F, Bishop JL, Brown AJ, Calvin WM, Clark RN, Des Marais DJ, Milliken RE, Roach LH, Roush TL, Swayze GA, Wray JJ (2008) Orbital identification of carbonate-bearing rocks on Mars. Science 322:1828–1832PubMedCrossRefGoogle Scholar
  36. Ehlmann BL, Mustard JF, Murchie SL, Bibring J-P, Meunier A, Fraeman AA, Langevin Y (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature 479:53–60PubMedCrossRefGoogle Scholar
  37. Forget F, Pierrehumbert RT (1997) Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278:1273–1276PubMedCrossRefGoogle Scholar
  38. Forget F, Wordsworth R, Millour E, Madeleine J-B, Kerber L, Leconte J, Marcq E, Haberle RM (2013) Global modeling of the early Martian climate under a denser CO2 atmosphere: temperature and CO2 ice clouds. Icarus 222:1–19CrossRefGoogle Scholar
  39. Franck S, Blok A, von Bloh W, Bounama C, Schellnhuber H-J, Svirezhev Y (2000) Habitable zone for Earth-like planets in the solar system. Planet Space Sci 48:1099–1105CrossRefGoogle Scholar
  40. Friedmann EI, Koriem AM (1989) Life on Mars: how it disappeared (if it was ever there). Adv Space Res Off J Comm Space Res (COSPAR) 9:167–172CrossRefGoogle Scholar
  41. Gilichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton P, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age and implication for astrobiology. Astrobiology 7:275–311PubMedCrossRefGoogle Scholar
  42. Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469PubMedCrossRefGoogle Scholar
  43. Grotzinger J (2009) Beyond water on Mars. Nat Geosci 2:231–233CrossRefGoogle Scholar
  44. Grotzinger JP, Crisp J, Vasavada AR, Anderson RC, Baker CJ, Barry R, Blake DF, Conrad P, Edgett KS, Ferdowski B, Gellert R, Gilbert JB, Golombek M, Gómez-Elvira J, Hassler DM, Jandura L, Litvak M, Mahaffy P, Justin M, Meyer M, Malin MC, Mitrofanov I, Simmonds JJ, Vaniman D, Welch RV, Wiens RC (2012) Mars science laboratory mission and science investigation. Space Sci Rev. doi: 10.1007/s11214-012-9892-2
  45. Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JFA (2008) Revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137PubMedCrossRefGoogle Scholar
  46. Hoehler T, Westall F (2010) Mars exploration program analysis group goal one: determine if life ever arose on Mars. Astrobiology 10:859–867PubMedCrossRefGoogle Scholar
  47. Horowitz N, Hobby GL, Hubbard JS (1976) The Viking carbon assimilation experiments: interim report. Science 194:1321–1322PubMedCrossRefGoogle Scholar
  48. Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–350PubMedCrossRefGoogle Scholar
  49. Kashefi K, Lovely D (2003) Extending the upper temperature limit for life. Science 301:934–936PubMedCrossRefGoogle Scholar
  50. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926PubMedCrossRefGoogle Scholar
  51. Kasting JF (1997) Warming early Earth and Mars. Science 276:1213–1215PubMedCrossRefGoogle Scholar
  52. Kasting J, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429–463CrossRefGoogle Scholar
  53. Klein HP, Levin GV (1976) The Viking biological investigation: preliminary results. Science 194:99–105PubMedCrossRefGoogle Scholar
  54. Klingelhofer G et al (2004) Jarosite and hematite at Meridiani Planum from opportunity’s Mossbauer spectrometer. Science 306:1740–1745PubMedCrossRefGoogle Scholar
  55. Kminek G, Bada J (2006) The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet Sci Lett 245:1–5CrossRefGoogle Scholar
  56. Knoll AJ, Grotzinger J (2006) Water on Mars and the prospect of Martian life. Elements 2:169–173CrossRefGoogle Scholar
  57. Lederberg J, Sagan C (1962) Microenvironments for life on Mars. Proc Natl Acad Sci 48:1473–1475PubMedCrossRefGoogle Scholar
  58. Léveillé RJ, Datta S (2010) Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: a review. Planet Space Sci 58:592–598CrossRefGoogle Scholar
  59. Levin GV, Straat PA (1979) Completion of the Viking labeled release experiment on Mars. J Mol Evol 14:167–183PubMedCrossRefGoogle Scholar
  60. Loizeau D, Mangold N, Poulet F, Bibring J-P, Gendrin A, Ansan V, Gomez C, Gondet B, Langevin Y, Masson P, Neukum G (2007) Phyllosilicates in the Mawrth Vallis region of Mars. J Geophys Res 112:1–20CrossRefGoogle Scholar
  61. Loizeau D, Mangold N, Poulet F, Ansan V, Hauber E, Bibring JP, Gondet B, Langevin Y, Masson P, Neukum G (2010) Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery, and DTM. Icarus 205:396–418CrossRefGoogle Scholar
  62. Mancinelli R (2005) Microbial life in brines, evaporates and saline sediments: the search for life on Mars. Adv Astrobiol Biogeophys 4:277–298Google Scholar
  63. Marion GM, Crowley JK, Thomson BJ, Hook SJ, Bridges NT, Brown AJ, Kargel JS, de Souza Filho CR (2008) Acidic Australian playa lakes as analogues for Mars. In: Lunar and planetary science XXXIX, # 1772Google Scholar
  64. Maurette M, Matrajit G, Gounelle M, Engrand C, Duprat J (2001) La matière extraterrestre primitive et les mystères de nos origines. In: Gargaud M, Despois D, Parisot JP (eds) L’Evironnement de la Terre Primitive. Presses Univ. Bordeaux, Bordeaux, pp 99–127Google Scholar
  65. McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250PubMedCrossRefGoogle Scholar
  66. McLennan SM, Bell JF III, Calvin WM, Christensen PR, Clark BC, de Souza PA, Farmer J, Farrand WH, Fike DA, Gellert R, Ghosh A, Glotch TD, Grotzinger JP, Hahn B, Herkenhoff KE, Hurowitz JA, Johnson JR, Johnson SS, Jolliff B, Klingelhöfer G et al (2005) Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett 240:95–121CrossRefGoogle Scholar
  67. Mormile MR, Hong B-Y, Benison KC (2009) Molecular analysis of the microbial communities of Mars analogue lakes in Western Australia. Astrobiology 10:919–930Google Scholar
  68. Morris RV, Ruff SW, Gellert R, Ming DW, Arvidson RE, Clark BC, Golden DC, Siebach K, Klingelhöfer G, Schröder C, Fleischer I, Yen AS, Squyres SW (2010) Identification of carbonate-rich outcrops on Mars by the spirit rover. Science 329:421–424PubMedCrossRefGoogle Scholar
  69. Navarro-Gonzalez R, Navarro KF, de la Rosa J, Iniguez E, Molina P, Miranda LD, Morales P, Cienfuegos E, Coll P, Raulin F, Amils R, McKayn C (2006) The limitations on organic detection in Mars-like soils by thermal volatilization–gas chromatography–MS and their implications for the Viking results. Proc Natl Acad Sci 103:16089–16094PubMedCrossRefGoogle Scholar
  70. Navarro-Gonzáles R, Vargas E, de la Rosa J, Raga AC, McKay CP (2010) Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J Geophys Res 115:E12010CrossRefGoogle Scholar
  71. Noffke N, Gerdes G, Klenke T (2003) Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty and evaporitic carbonatic). Earth Sci Rev 12:1–14Google Scholar
  72. Onstott TC, Lin L-H, Davidson M, Mislowack B, Borcsik M, Hall J, Slater G, Ward J, Sherwood Lollar B, Lippmann-Pipke J, Boice E, Pratt LM, Pfiffner SM, Moser DP, Gihring TM, Kieft T, Phelps TJ, van Heerden E, Litthaur D, DeFlaun M, Rothmel R, Wanger G, Southam G (2006) The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa. Geomicrobiol J 23:369–414CrossRefGoogle Scholar
  73. Orgel LE (1998) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123Google Scholar
  74. Pondrelli M, Rossi AP, Ori GG, van Gasselt S, Ceramicola S (2011) Mud volcanoes in the geological record of Mars: the case of Fisoff Crater. Earth Planet Sci Lett 304:511–519CrossRefGoogle Scholar
  75. Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci 97:1247–1251PubMedCrossRefGoogle Scholar
  76. Prieur D (2005) Microbiology of deep-sea hydrothermal vents: lessons for Mars exploration. Adv Astrobiol Biogeophys 4:299–324Google Scholar
  77. Rosing MT (1999) 13C depleted carbon microparticles in >3,700 Ma seafloor sedimentary rocks from West Greenland. Science 283:674–676PubMedCrossRefGoogle Scholar
  78. Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland: indications of >3,700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 17:237–244CrossRefGoogle Scholar
  79. Rosing MT, Bird DK, Sleep H, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464:744–747PubMedCrossRefGoogle Scholar
  80. Ruff SW, Farmer JD, Calvin WM, Herkenhoff KE, Johnson JR, Morris RV, Rice ME, Arvidson RE, Bell JF III, Christensen PR, Squyres SW (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. J Geophys Res 116:E00F23CrossRefGoogle Scholar
  81. Russell JM, Hall AJ, Martin W (2010) Serpentinization and its contribution to the energy for the emergence of life. Geobiology 8:355–371PubMedCrossRefGoogle Scholar
  82. Schiaparelli G (1887) La vita sul pianeta marte, Estratto dal fascicolo N.° 11 Anno IV – 1895 della Rivista “Natura ed Arte”Google Scholar
  83. Schumann G, Manz W, Reitner J, Lustrino M (2004) Ancient fungal life in North Pacific Eocene oceanic crust. Geomicrobiol J 21:241–246CrossRefGoogle Scholar
  84. Schwenzer S, Abramov O, Allen CC, Bridges JC, Clifford SM, Filiberto J, Kring DA, Lasue J, McGovern PJ, Newsom HE, Treiman AH, Vaniman DT, Wiens RC, Wittmann A (2012) Gale Crater: formation and post-impact hydrous environments. Planet Space Sci 70:84–95CrossRefGoogle Scholar
  85. Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139–142PubMedCrossRefGoogle Scholar
  86. Squyres SW, Kasting JF (1994) Early Mars: how warm and how wet? Science 265:744–749PubMedCrossRefGoogle Scholar
  87. Squyres SW, Arvidson RE, Ruff S, Gellert R, Morris RV, Ming DW, Crumpler L, Farmer J, des Marais DJ, Yen A, McLennan SM, Calvin W, III Bell JFB, Clark BC, Wang A, McCoy TJ, Schmidt ME, de Souza PA Jr (2008) Detection of silica-rich deposits on Mars. Science 320:1063–1067PubMedCrossRefGoogle Scholar
  88. Stivaletta N, Barbieri R, Billi D (2012) Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). Orig Life Evol Biosph 42:187–200PubMedCrossRefGoogle Scholar
  89. Summons RE, Amend JP, Bish D, Buick R, Cody GD, Des Marais DJ, Dromart G, Eigenbrode JL, Knoll AH, Sumner DY (2011) Preservation of Martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11:157–181PubMedCrossRefGoogle Scholar
  90. Taylor-George S, Palmer F, Staley JT, Borns DJ, Curtiss B, Adams JB (1983) Fungi and bacteria involved in desert varnish formation. Microb Ecol 9:227–245CrossRefGoogle Scholar
  91. Tosca NJ, Knoll AJ, McLennan SM (2008) Water activity and the challenge for early life on Mars. Science 320:1204–1207PubMedCrossRefGoogle Scholar
  92. Van den Boorn S, Van Bergen MJ, Nijman W, Vroon PZ (2007) Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopes. Geology 35:939–942CrossRefGoogle Scholar
  93. Wassmann M, Moeller R, Rabbow E, Panitz C, Horneck G, Reitz G, Douki T, Cadet J, Stan-Lotter H, Cockell CS, Rettberg P (2012) Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to Low-Earth orbit and simulated Martian conditions: data from the space experiment ADAPT on EXPOSE-E. Astrobiology 12:498–507PubMedCrossRefGoogle Scholar
  94. Westall F (2005) Early life on Earth and analogies to Mars. In: Tokano T (ed) Water on Mars and life, advances in astrobiology and biogeophysics. Springer, Berlin, pp 45–64Google Scholar
  95. Westall F, Folk RL (2003) Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua greenstone belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–330CrossRefGoogle Scholar
  96. Westall F, de Vries ST, Nijman W, Rouchon V, Orberger B, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud J-N, Marchesini D, Anne S (2006) The 3.466 Ga Kitty’s Gap Chert, an early Archaean microbial ecosystem. In: Reimold WU, Gibson R (eds) Processes on the early Earth, vol 405, Geological society of America special publication. Geological Society of America, Boulder, pp 105–131CrossRefGoogle Scholar
  97. Westall F, Foucher F, Cavalazzi B, de Vries ST, Nijman W, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud JN, Marchesini D, Anne S (2011a) Early life on Earth and Mars: a case study from 3.5 Ga-old rocks from the Pilbara, Australia. Planet Space Sci 59:1093–1106CrossRefGoogle Scholar
  98. Westall F, Cavalazzi B, Lemelle L, Marrocchi Y, Rouzaud JN, Simionovici A, Salomé M, Mostefaoui S, Andreazza C, Foucher F, Toporski J, Jauss A, Thiel V, Southam G, MacLean L, Wirick S, Hofmann A, Meibom A, Robert F, Défarge C (2011b) Implications of in situ calcification for photosynthesis in a 3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth Planet Sci Lett 310:468–479CrossRefGoogle Scholar
  99. Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago J, Kminek G (2013a) Habitability on rocky planets and satellites (for example, Mars), from a microbial point of view. Astrobiology (Submitted)Google Scholar
  100. Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago J, Kminek G (2013b) Scenarios for the search for life on a habitable Mars. Icarus (Submitted)Google Scholar
  101. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.CNRS-Centre de Biophysique MoléculaireOrléans cedex 2France

Personalised recommendations