Aschbacher, M. (1980). The finite simple groups and their classification. New Haven, CT: Yale University Press.
Google Scholar
Aschbacher, M. (2001). The status of the classification of the finite simple groups. Notices of the American Mathematical Society, 51, 736–740.
Google Scholar
Baker, A. (2007). Is there a problem of induction for mathematics? In M. Leng, A. Paseau, & M. Potter (Eds.), Mathematical knowledge (pp. 59–73). Oxford: Oxford University Press.
Google Scholar
Baker, A. (2008). Experimental mathematics. Erkenntnis, 68, 331–344.
CrossRef
Google Scholar
Baker, A. (2009). Non-deductive methods in mathematics. Stanford Encyclopedia of Philosophy. Accessed May 2013. http://plato.stanford.edu/entries/mathematics-nondeductive/
Bender, H. (1970). On the uniqueness theorem. Illinois Journal of Mathematics, 14, 376–384.
Google Scholar
Borwein, J. M., & Bailey, D. H. (2004). Mathematics by experiment: Plausible reasoning in the 21st century. Natick, MA: A. K. Peters.
Google Scholar
Borwein, J. M., Bailey, D. H., & Girgensohn, R. (2004). Experimentation in mathematics: Computational paths to discovery. Natick, MA: A. K. Peters.
Google Scholar
Brent, R., van de Lune, J., te Riele, H., & Winter, D. (1982). On the zeros of the Riemann Zeta Function in the critical strip. II. Mathematics of Computation, 39, 681–688.
Google Scholar
Brown, J. R. (1999). Philosophy of mathematics: An introduction to the world of proofs and pictures. London: Routledge.
Google Scholar
Chandler, C. (1999). Hello, I must be going: Groucho Marx and his friends. Garden City, NY: Doubleday.
Google Scholar
Collins, M. J. (1980). Finite simple groups, II. London: Academic.
Google Scholar
Corfield, D. (2003). Towards a philosophy of real mathematics. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Derbyshire, J. (2003). Prime obsession: Bernhard Riemann and the greatest unsolved problem in mathematics. Washington, DC: Joseph Henry Press.
Google Scholar
Dove, I. J. (2009). Towards a theory of mathematical argument. Foundations of Science, 14(1–2), 137–152.
CrossRef
Google Scholar
du Sautoy, M. (2003). The music of the primes: Searching to solve the greatest mystery in mathematics. New York: Harper Collins.
Google Scholar
Echeverría, J. (1996). Empirical methods in mathematics. In G. Munévar (Ed.), Spanish studies in the philosophy of science, volume 86 of Boston studies in the philosophy of science (pp. 19–55). Dordrecht: Kluwer.
Google Scholar
Edwards, H. M. (1974). Riemann’s zeta function. New York: Academic.
Google Scholar
Epstein, D., Levy, S., & de la Llave, R. (1992). About this journal. Experimental Mathematics,1, 1–13.
Google Scholar
Fadiman, C. (1955). The American treasury. New York: Harper.
Google Scholar
Fallis, D. (1997). The epistemic status of probabilistic proof. Journal of Philosophy, 94, 165–186.
CrossRef
Google Scholar
Fallis, D. (2000). The reliability of randomized algorithms. British Journal for the Philosophy of Science, 51, 255–271.
CrossRef
Google Scholar
Feit, W., & Thompson, J. G. (1963). Solvability of groups of odd order. Pacific Journal of Mathematics, 13, 775–1029.
CrossRef
Google Scholar
Franklin, J. (1987). Non-deductive logic in mathematics. British Journal for the Philosophy of Science, 38(1), 1–18.
CrossRef
Google Scholar
Franklin, J. (2001). Resurrecting logical probability. Erkenntnis, 55, 277–305.
CrossRef
Google Scholar
Franklin, J. (2009). What science knows and how it knows it. New York: Encounter Books.
Google Scholar
Franklin, J. (2011). The objective Bayesian conceptualisation of proof and reference class problems. Sydney Law Review, 33, 545–561.
Google Scholar
Gorenstein, D. (1979). The classification of finite simple groups (I). Bulletin of the American Mathematical Society, 1, 43–199 (New Series).
Google Scholar
Gorenstein, D. (1980). An outline of the classification of finite simple groups. In B. Cooperstein & G. Mason (Eds.), The Santa Cruz conference on finite groups, volume 37 of proceedings of symposia in pure mathematics (pp. 3–28). Providence, RI: American Mathematical Society.
Google Scholar
Gorenstein, D. (1982). Finite simple groups. New York: Plenum.
Google Scholar
Gorenstein, D., Lyons, R., & Solomon, R. (1994–2005). The classification of the finite simple groups (6 Vols.). Providence, RI: American Mathematical Society.
Google Scholar
Gourdon, X. (2004). The 1013 first zeros of the Riemann Zeta Function, and zeros computation at very large height. Accessed May 2013. http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e1%3-1e24.pdf
Google Scholar
Hunt, D. (1980). A computer-based atlas of finite simple groups. In B. Cooperstein & G. Mason (Eds.), The Santa Cruz conference on finite groups, volume 37 of proceedings of symposia in pure mathematics (pp. 507–510). Providence, RI: American Mathematical Society.
Google Scholar
Ivić, A. (2003). On some reasons for doubting the Riemann Hypothesis. Accessed May 2013. http://arxiv.org/abs/math/0311162
Janko, Z. (1966). A new finite simple group with abelian 2-Sylow subgroups and its characterization. Journal of Algebra, 3, 147–186.
CrossRef
Google Scholar
Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Keynes, J. M. (1921). A treatise on probability. London: Macmillan.
Google Scholar
Kolata, G. B. (1976). Mathematical proofs: The genesis of reasonable doubt. Science, 192, 989–990.
CrossRef
Google Scholar
Lehrer Dive, L. (2003). An epistemic structuralist account of mathematical knowledge. PhD thesis, University of Sydney.
Google Scholar
Linnik, Y. V. (1952). Some conditional theorems concerning the binary Goldbach problem. Izvestiya Akademii Nauk SSSR, 16, 503–520.
Google Scholar
Lyons, R. (1972). Evidence for a new finite simple group. Journal of Algebra, 20, 540–569.
CrossRef
Google Scholar
Marsaglia, G. (2005). On the randomness of pi and other decimal expansions. Accessed May 2013. http://www.yaroslavvb.com/papers/marsaglia-on.pdf
Mason, G. (1980). Preface. In B. Cooperstein & G. Mason (Eds.), The Santa Cruz conference on finite groups, volume 37 of proceedings of symposia in pure mathematics (p. xiii). Providence, RI: American Mathematical Society.
Google Scholar
Müller, J., & Neunhöffer, M. (1987). Some computations regarding Foulkes’ conjecture. Experimental Mathematics, 14, 277–283.
CrossRef
Google Scholar
O’Nan, M. (1976). Some evidence for the existence of a new finite simple group. Proceedings of the London Mathematical Society, 32, 421–479.
CrossRef
Google Scholar
Pólya, G. (1954). Mathematics and plausible reasoning (2 Vols.). Princeton, NJ: Princeton University Press.
Google Scholar
Renyi, A. (1962). On the representation of an even number as the sum of a prime and an almost prime. American Mathematical Society Translations, 2nd series, 19, 299–321.
Google Scholar
Riemann, B. (1859 [1974]). On the number of primes less than a given magnitude. In H. Edwards (Ed.), Riemann’s zeta function (pp. 299–305). New York: Academic.
Google Scholar
Ruhkin, A. (2001). Testing randomness: A suite of statistical procedures. Theory of Probability and its Applications, 45, 111–132.
CrossRef
Google Scholar
Sabbagh, K. (2002). Dr Riemann’s zeros. London: Atlantic Books.
Google Scholar
Solomon, R. (2001). A brief history of the classification of the finite simple groups. Bulletin of the American Mathematical Society, 38, 315–352.
CrossRef
Google Scholar
Tenenbaum, G. (1995). Introduction to analytic and probabilistic number theory. Cambridge: Cambridge University Press.
Google Scholar
Tits, J. (1971). Groupes finis simples sporadiques. In A. Dold & B. Eckmann (Eds.), Séminaire Bourbaki, volume 180 of Springer Lecture Notes in Mathematics (pp. 187–211). New York: Springer.
Google Scholar
Van Kerkhove, B., & Van Bendegem, J. P. (2008). Pi on earth, or mathematics in the real world. Erkenntnis, 68, 421–435.
CrossRef
Google Scholar
Wang, Y. (Ed.). (2002). Goldbach conjecture. River Edge, NJ: World Scientific.
Google Scholar
Weil, A. (1948). Variétés abéliennes et courbes algébriques. Paris: Hermann.
Google Scholar
Williamson, J. (2010). In defence of objective Bayesianism. Oxford: Oxford University Press.
CrossRef
Google Scholar
Zeilberger, D. (1993). Theorems for a price: Tomorrow’s semi-rigorous mathematical culture. Notices of the American Mathematical Society, 46, 978–981.
Google Scholar