Skip to main content

Non-deductive Logic in Mathematics: The Probability of Conjectures

Part of the Logic, Epistemology, and the Unity of Science book series (LEUS,volume 30)

Abstract

Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism or non-deductive logic), and some detailed examples of its use in mathematics surveyed. Examples of inductive reasoning in experimental mathematics are given and it is argued that the problem of induction is best appreciated in the mathematical case.

Keywords

  • Zeta Function
  • Simple Group
  • Inductive Inference
  • Logical Relation
  • Inductive Argument

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-6534-4_2
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-6534-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

References

  • Aschbacher, M. (1980). The finite simple groups and their classification. New Haven, CT: Yale University Press.

    Google Scholar 

  • Aschbacher, M. (2001). The status of the classification of the finite simple groups. Notices of the American Mathematical Society, 51, 736–740.

    Google Scholar 

  • Baker, A. (2007). Is there a problem of induction for mathematics? In M. Leng, A. Paseau, & M. Potter (Eds.), Mathematical knowledge (pp. 59–73). Oxford: Oxford University Press.

    Google Scholar 

  • Baker, A. (2008). Experimental mathematics. Erkenntnis, 68, 331–344.

    CrossRef  Google Scholar 

  • Baker, A. (2009). Non-deductive methods in mathematics. Stanford Encyclopedia of Philosophy. Accessed May 2013. http://plato.stanford.edu/entries/mathematics-nondeductive/

  • Bender, H. (1970). On the uniqueness theorem. Illinois Journal of Mathematics, 14, 376–384.

    Google Scholar 

  • Borwein, J. M., & Bailey, D. H. (2004). Mathematics by experiment: Plausible reasoning in the 21st century. Natick, MA: A. K. Peters.

    Google Scholar 

  • Borwein, J. M., Bailey, D. H., & Girgensohn, R. (2004). Experimentation in mathematics: Computational paths to discovery. Natick, MA: A. K. Peters.

    Google Scholar 

  • Brent, R., van de Lune, J., te Riele, H., & Winter, D. (1982). On the zeros of the Riemann Zeta Function in the critical strip. II. Mathematics of Computation, 39, 681–688.

    Google Scholar 

  • Brown, J. R. (1999). Philosophy of mathematics: An introduction to the world of proofs and pictures. London: Routledge.

    Google Scholar 

  • Chandler, C. (1999). Hello, I must be going: Groucho Marx and his friends. Garden City, NY: Doubleday.

    Google Scholar 

  • Collins, M. J. (1980). Finite simple groups, II. London: Academic.

    Google Scholar 

  • Corfield, D. (2003). Towards a philosophy of real mathematics. Cambridge: Cambridge University Press.

    CrossRef  Google Scholar 

  • Derbyshire, J. (2003). Prime obsession: Bernhard Riemann and the greatest unsolved problem in mathematics. Washington, DC: Joseph Henry Press.

    Google Scholar 

  • Dove, I. J. (2009). Towards a theory of mathematical argument. Foundations of Science, 14(1–2), 137–152.

    CrossRef  Google Scholar 

  • du Sautoy, M. (2003). The music of the primes: Searching to solve the greatest mystery in mathematics. New York: Harper Collins.

    Google Scholar 

  • Echeverría, J. (1996). Empirical methods in mathematics. In G. Munévar (Ed.), Spanish studies in the philosophy of science, volume 86 of Boston studies in the philosophy of science (pp. 19–55). Dordrecht: Kluwer.

    Google Scholar 

  • Edwards, H. M. (1974). Riemann’s zeta function. New York: Academic.

    Google Scholar 

  • Epstein, D., Levy, S., & de la Llave, R. (1992). About this journal. Experimental Mathematics,1, 1–13.

    Google Scholar 

  • Fadiman, C. (1955). The American treasury. New York: Harper.

    Google Scholar 

  • Fallis, D. (1997). The epistemic status of probabilistic proof. Journal of Philosophy, 94, 165–186.

    CrossRef  Google Scholar 

  • Fallis, D. (2000). The reliability of randomized algorithms. British Journal for the Philosophy of Science, 51, 255–271.

    CrossRef  Google Scholar 

  • Feit, W., & Thompson, J. G. (1963). Solvability of groups of odd order. Pacific Journal of Mathematics, 13, 775–1029.

    CrossRef  Google Scholar 

  • Franklin, J. (1987). Non-deductive logic in mathematics. British Journal for the Philosophy of Science, 38(1), 1–18.

    CrossRef  Google Scholar 

  • Franklin, J. (2001). Resurrecting logical probability. Erkenntnis, 55, 277–305.

    CrossRef  Google Scholar 

  • Franklin, J. (2009). What science knows and how it knows it. New York: Encounter Books.

    Google Scholar 

  • Franklin, J. (2011). The objective Bayesian conceptualisation of proof and reference class problems. Sydney Law Review, 33, 545–561.

    Google Scholar 

  • Gorenstein, D. (1979). The classification of finite simple groups (I). Bulletin of the American Mathematical Society, 1, 43–199 (New Series).

    Google Scholar 

  • Gorenstein, D. (1980). An outline of the classification of finite simple groups. In B. Cooperstein & G. Mason (Eds.), The Santa Cruz conference on finite groups, volume 37 of proceedings of symposia in pure mathematics (pp. 3–28). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Gorenstein, D. (1982). Finite simple groups. New York: Plenum.

    Google Scholar 

  • Gorenstein, D., Lyons, R., & Solomon, R. (1994–2005). The classification of the finite simple groups (6 Vols.). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Gourdon, X. (2004). The 1013 first zeros of the Riemann Zeta Function, and zeros computation at very large height. Accessed May 2013. http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e1%3-1e24.pdf

    Google Scholar 

  • Hunt, D. (1980). A computer-based atlas of finite simple groups. In B. Cooperstein & G. Mason (Eds.), The Santa Cruz conference on finite groups, volume 37 of proceedings of symposia in pure mathematics (pp. 507–510). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Ivić, A. (2003). On some reasons for doubting the Riemann Hypothesis. Accessed May 2013. http://arxiv.org/abs/math/0311162

  • Janko, Z. (1966). A new finite simple group with abelian 2-Sylow subgroups and its characterization. Journal of Algebra, 3, 147–186.

    CrossRef  Google Scholar 

  • Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.

    CrossRef  Google Scholar 

  • Keynes, J. M. (1921). A treatise on probability. London: Macmillan.

    Google Scholar 

  • Kolata, G. B. (1976). Mathematical proofs: The genesis of reasonable doubt. Science, 192, 989–990.

    CrossRef  Google Scholar 

  • Lehrer Dive, L. (2003). An epistemic structuralist account of mathematical knowledge. PhD thesis, University of Sydney.

    Google Scholar 

  • Linnik, Y. V. (1952). Some conditional theorems concerning the binary Goldbach problem. Izvestiya Akademii Nauk SSSR, 16, 503–520.

    Google Scholar 

  • Lyons, R. (1972). Evidence for a new finite simple group. Journal of Algebra, 20, 540–569.

    CrossRef  Google Scholar 

  • Marsaglia, G. (2005). On the randomness of pi and other decimal expansions. Accessed May 2013. http://www.yaroslavvb.com/papers/marsaglia-on.pdf

  • Mason, G. (1980). Preface. In B. Cooperstein & G. Mason (Eds.), The Santa Cruz conference on finite groups, volume 37 of proceedings of symposia in pure mathematics (p. xiii). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Müller, J., & Neunhöffer, M. (1987). Some computations regarding Foulkes’ conjecture. Experimental Mathematics, 14, 277–283.

    CrossRef  Google Scholar 

  • O’Nan, M. (1976). Some evidence for the existence of a new finite simple group. Proceedings of the London Mathematical Society, 32, 421–479.

    CrossRef  Google Scholar 

  • Pólya, G. (1954). Mathematics and plausible reasoning (2 Vols.). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Renyi, A. (1962). On the representation of an even number as the sum of a prime and an almost prime. American Mathematical Society Translations, 2nd series, 19, 299–321.

    Google Scholar 

  • Riemann, B. (1859 [1974]). On the number of primes less than a given magnitude. In H. Edwards (Ed.), Riemann’s zeta function (pp. 299–305). New York: Academic.

    Google Scholar 

  • Ruhkin, A. (2001). Testing randomness: A suite of statistical procedures. Theory of Probability and its Applications, 45, 111–132.

    CrossRef  Google Scholar 

  • Sabbagh, K. (2002). Dr Riemann’s zeros. London: Atlantic Books.

    Google Scholar 

  • Solomon, R. (2001). A brief history of the classification of the finite simple groups. Bulletin of the American Mathematical Society, 38, 315–352.

    CrossRef  Google Scholar 

  • Tenenbaum, G. (1995). Introduction to analytic and probabilistic number theory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tits, J. (1971). Groupes finis simples sporadiques. In A. Dold & B. Eckmann (Eds.), Séminaire Bourbaki, volume 180 of Springer Lecture Notes in Mathematics (pp. 187–211). New York: Springer.

    Google Scholar 

  • Van Kerkhove, B., & Van Bendegem, J. P. (2008). Pi on earth, or mathematics in the real world. Erkenntnis, 68, 421–435.

    CrossRef  Google Scholar 

  • Wang, Y. (Ed.). (2002). Goldbach conjecture. River Edge, NJ: World Scientific.

    Google Scholar 

  • Weil, A. (1948). Variétés abéliennes et courbes algébriques. Paris: Hermann.

    Google Scholar 

  • Williamson, J. (2010). In defence of objective Bayesianism. Oxford: Oxford University Press.

    CrossRef  Google Scholar 

  • Zeilberger, D. (1993). Theorems for a price: Tomorrow’s semi-rigorous mathematical culture. Notices of the American Mathematical Society, 46, 978–981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Franklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Franklin, J. (2013). Non-deductive Logic in Mathematics: The Probability of Conjectures. In: Aberdein, A., Dove, I. (eds) The Argument of Mathematics. Logic, Epistemology, and the Unity of Science, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6534-4_2

Download citation