Skip to main content

The Parallel Structure of Mathematical Reasoning

  • Chapter
  • First Online:
The Argument of Mathematics

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 30))

Abstract

This chapter defends an account of mathematical reasoning as comprised of two parallel structures. The argumentational structure is composed of arguments by means of which mathematicians seek to persuade each other of their results or, more generally, to achieve goals appropriate for whatever dialogue they are having. The inferential structure is composed of derivations which offer a formal counterpart to these arguments. The precise relationship between the two structures may be understood in terms of the range of argumentation schemes which may be instantiated by steps of the argumentational structure. Just as different views about the foundations of mathematics may be characterized in terms of the admissibility of steps in the inferential structure, different views about mathematical practice may be characterized in terms of the admissibility of steps in the argumentational structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such ‘pointing’ may bring to mind Jody Azzouni’s ‘derivation indicator view’ of mathematical practice (Azzouni, 2004). However, Azzouni’s ‘indicating’ describes a looser correspondence, closer to that holding in general between the two structures. Moreover, at least on some construals, such as that in (Dove, 2013, 304), Azzouni’s conception of derivation is broader than mine.

  2. 2.

    This would seem to be an attempt to characterize what would later be described as abductive reasoning, or inference to the best explanation.

References

  • Aberdein, A. (2006). Managing informal mathematical knowledge: Techniques from informal logic. In J. M. Borwein & W. M. Farmer (Eds.), MKM 2006, Vol. 4108 in LNAI (pp. 208–221). Berlin: Springer.

    Google Scholar 

  • Aberdein, A. (2007). The informal logic of mathematical proof. In B. Van Kerkhove & J. P. Van Bendegem (Eds.), Perspectives on mathematical practices: Bringing together philosophy of mathematics, sociology of mathematics, and mathematics education (pp. 135–151). Dordrecht: Springer.

    Google Scholar 

  • Aberdein, A. (2010). Observations on sick mathematics. In B. Van Kerkhove, J. P. Van Bendegem & J. De Vuyst (Eds.), Philosophical perspectives on mathematical practice (pp. 269–300). London: College Publications.

    Google Scholar 

  • Aberdein, A. (2013). Mathematical wit and mathematical cognition. Topics in Cognitive Science, 5(2), 231–250.

    Article  Google Scholar 

  • Alama, J., & Kahle, R. (2013). Checking proofs. In A. Aberdein & I.J. Dove (Eds.), The argument of mathematics (pp. 147–170). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Alcolea Banegas, J. (1998). L’argumentació en matemàtiques. In E. Casaban i Moya (Ed.), XIIè Congrés Valencià de Filosofia (pp. 135–147). Valencià. [Trans. by A. Aberdein & I.J. Dove (Eds.), The Argument of Mathematics (pp. 47–60). Dordrecht: Springer].

    Google Scholar 

  • Aristotle (1947). Posterior analytics (Trans. by G. R. G. Mure). In R. McKeon (Ed.), Introduction to Aristotle (pp. 9–109). New York: Random House.

    Google Scholar 

  • Aristotle (1995). On sophistical refutations (Trans. by W. A. Pickard-Cambridge). In H. V. Hansen & R. C. Pinto (Eds.), Fallacies: Classical and contemporary readings (pp. 19–38). University Park, PA: Pennsylvania State University Press.

    Google Scholar 

  • Azzouni, J. (2004). The derivation-indicator view of mathematical practice. Philosophia Mathematica, 12(2), 81–105.

    Article  Google Scholar 

  • Azzouni, J. (2009). Why do informal proofs conform to formal norms? Foundations of Science, 14(1–2), 9–26.

    Article  Google Scholar 

  • Bartha, P. (2013). Analogical arguments in mathematics. In A. Aberdein & I.J. Dove (Eds.), The Argument of Mathematics (pp. 197–236). Dordrecht: Springer.

    Google Scholar 

  • Bourbaki, N. (1968). Elements of mathematics: Theory of sets. Berlin: Springer.

    Google Scholar 

  • Cantù, P. (2010). Aristotle’s prohibition rule on kind-crossing and the definition of mathematics as a science of quantities. Synthese, 174(2), 225–235.

    Article  Google Scholar 

  • Corry, L. (2009). Writing the ultimate mathematical textbook: Nicolas Bourbaki’s Éléments de mathématique. In E. Robson & J. Stedall (Eds.), Oxford handbook of the history of mathematics (pp. 565–587). Oxford: Oxford University Press.

    Google Scholar 

  • Detlefsen, M. (2008). Purity as an ideal of proof. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 179–197). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Devlin, K. (2008). A mathematician reflects on the useful and reliable illusion of reality in mathematics. Erkenntnis, 68(3), 359–379.

    Article  Google Scholar 

  • Dove, I. J. (2013). Towards a theory of mathematical argument. In A. Aberdein & I.J. Dove (Eds.), The Argument of Mathematics (pp. 291–308). Dordrecht: Springer. (Reprinted from Foundations of Science, 2009, 14(1–2), 137–152).

    Google Scholar 

  • Epstein, R. L. (2013). Mathematics as the art of abstraction. In A. Aberdein & I.J. Dove (Eds.), The Argument of Mathematics (pp. 257–289). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hankinson, R. J. (2005). Aristotle on kind-crossing. In R. Sharples (Ed.), Philosophy and the sciences in antiquity (pp. 23–54). Aldershot: Ashgate.

    Google Scholar 

  • Hardy, G. H. (1928). Mathematical proof. Mind, 38, 11–25.

    Google Scholar 

  • Heath, T. L. (1949). Mathematics in Aristotle. Oxford: Clarendon.

    Google Scholar 

  • Hersh, R. (2013). To establish new mathematics, we use our mental models and build on established mathematics. In C. Cozzo & E. Ippoliti (Eds.), From an heuristic point of view: In honor of Carlo Cellucci. Newcastle upon Tyne: Cambridge Scholars Publishing, forthcoming.

    Google Scholar 

  • Hitchcock, D. (2003). Toulmin’s warrants. In F. H. van Eemeren, J. Blair, C. Willard & A. F. Snoeck-Henkemans (Eds.), Anyone who has a view: Theoretical contributions to the study of argumentation (pp. 69–82). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Hodges, W. (1998). An editor recalls some hopeless papers. Bulletin of Symbolic Logic, 4(1), 1–16.

    Article  Google Scholar 

  • Hunt, B. J. (1991). Rigorous discipline: Oliver Heaviside versus the mathematicians. In P. Dear (Ed.), The literary structure of scientific argument (pp. 72–95). Philadelphia, PA: University of Pennsylvania Press.

    Google Scholar 

  • Inglis, M., Mejía-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66(1), 3–21.

    Article  Google Scholar 

  • Jaffe, A., & Quinn, F. (1993). “Theoretical mathematics”: Toward a cultural synthesis of mathematics and theoretical physics. Bulletin of the American Mathematical Society, 29, 1–13.

    Article  Google Scholar 

  • Krabbe, E. C. W. (2013). Strategic maneuvering in mathematical proofs. In A. Aberdein & I.J. Dove (Eds.), The Argument of Mathematics (pp. 181–197). Dordrecht: Springer. (Reprinted from Argumentation, 2008, 22(3), 453–468)

    Google Scholar 

  • Lakatos, I. (1978a). A renaissance of empiricism in the recent philosophy of mathematics. In Philosophical papers (Vol. 2, pp. 24–42). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lakatos, I. (1978b). Cauchy and the continuum: The significance of non-standard analysis for the history and philosophy of mathematics. In Philosophical papers (Vol. 2, pp. 43–60). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lavers, G. (2008). Carnap, formalism, and informal rigour. Philosophia Mathematica, 16(1), 4–24.

    Google Scholar 

  • MacKenzie, D. (2001). Mechanizing proof: Computing, risk, and trust. Cambridge, MA: MIT Press.

    Google Scholar 

  • Maddy, P. (2007). Second philosophy: A naturalistic method. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Mendell, H. (n.d.). Bryson’s squaring of the circle. http://www.calstatela.edu/faculty/hmendel/Ancient%20Mathematics/Philosophical%20Texts/Bryson/Bryson.html

  • Michalewicz, Z., & Fogel, D. B. (2004). How to solve it: Modern heuristics. Berlin: Springer.

    Book  Google Scholar 

  • Miller, D. (2005). Do we reason when we think we reason, or do we think? Learning for Democracy, 1(3), 57–71.

    Google Scholar 

  • Miller, D. (2006). Out of error: Further essays on critical rationalism. Aldershot: Ashgate.

    Google Scholar 

  • Pease, A., & Aberdein, A. (2011). Five theories of reasoning: Interconnections and applications to mathematics. Logic and Logical Philosophy, 20(1–2), 7–57.

    Google Scholar 

  • Pólya, G. (1954). Mathematics and plausible reasoning (Vol. 2). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Robinson, A. (1964). Formalism 64. In Y. Bar-Hillel (Ed.), Proceedings of the international congress for logic, methodology and philosophy of science, Jerusalem (pp. 228–246). Amsterdam: North-Holland.

    Google Scholar 

  • Ruelle, D. (2000). Conversations on mathematics with a visitor from outer space. In V. Arnold, M. Atiyah, P. Lax & B. Mazur (Eds.), Mathematics: Frontiers and perspectives (pp. 251–269). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Russell, B. (1986 [1901]). Mathematics and the metaphysicians. In Mysticism and logic (pp. 75–95). London: Unwin.

    Google Scholar 

  • Stedall, J. A. (2002). A discourse concerning algebra: English algebra to 1685. Oxford: Oxford University Press.

    Google Scholar 

  • Swart, E. (1980). The philosophical implications of the four-color problem. The American Mathematical Monthly, 87, 697–707.

    Article  Google Scholar 

  • Sylvester, J. J. (1956 [1869]). The study that knows nothing of observation. In J. R. Newman (Ed.), The world of mathematics (Vol. 3, pp. 1758–1766). New York: Simon & Schuster.

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tutte, W. T. (1998). Graph theory as I have known it. Oxford: Oxford University Press.

    Google Scholar 

  • Tymoczko, T. (1979). The four-color problem and its philosophical significance. Journal of Philosophy, 76, 57–83.

    Article  Google Scholar 

  • Walton, D. N., & Krabbe, E. C. W. (1995). Commitment in dialogue: Basic concepts of interpersonal reasoning. Albany, NY: State University of New York Press.

    Google Scholar 

  • Walton, D. N., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Zeilberger, D. (1993). Theorems for a price: Tomorrow’s semi-rigorous mathematical culture. Notices of the American Mathematical Society, 46, 978–981.

    Google Scholar 

Download references

Acknowledgements

Previous versions of parts of this chapter were delivered in Vienna, St Andrews, Gainesville, FL, Windsor, ON, and Birmingham. I am grateful to the audiences for helpful discussion. I am also grateful to Ian Dove for insightful comments and to Alison Pease for ideas developed during our collaboration on (Pease and Aberdein, 2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Aberdein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aberdein, A. (2013). The Parallel Structure of Mathematical Reasoning. In: Aberdein, A., Dove, I. (eds) The Argument of Mathematics. Logic, Epistemology, and the Unity of Science, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6534-4_18

Download citation

Publish with us

Policies and ethics