Towards a Theory of Mathematical Argument

  • Ian J. Dove
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 30)


In this paper, I assume, perhaps controversially, that translation into a language of formal logic is not the method by which mathematicians assess mathematical reasoning. Instead, I argue that the actual practice of analyzing, evaluating and critiquing mathematical reasoning resembles, and perhaps equates with, the practice of informal logic or argumentation theory. It doesn’t matter whether the reasoning is a full-fledged mathematical proof or merely some non-deductive mathematical justification: in either case, the methodology of assessment overlaps to a large extent with argument assessment in non-mathematical contexts. I demonstrate this claim by considering the assessment of axiomatic or deductive proofs, probabilistic evidence, computer-aided proofs, and the acceptance of axioms. I also consider Jody Azzouni’s ‘derivation indicator’ view of proofs because it places derivations—which may be thought to invoke formal logic—at the center of mathematical justificatory practice. However, when the notion of ‘derivation’ at work in Azzouni’s view is clarified, it is seen to accord with, rather than to count against, the informal logical view I support. Finally, I pose several open questions for the development of a theory of mathematical argument.


Argument schemes Argumentation Azzouni Dialectic Informal logic Mathematics Proof Rav. 



A prior version of this paper was published in Foundations of Science (2009), 14(1–2):137–152. It received careful and helpful criticism from Andrew Aberdein and David Sherry. I thank them both. Previous versions of this paper were presented in Las Vegas and Amsterdam. I thank the audiences for their helpful questions and comments.


  1. Aberdein, A. (2005). The uses of argument in mathematics. Argumentation, 19, 287–301.CrossRefGoogle Scholar
  2. Aberdein, A. (2007). The informal logic of mathematical proof. In J. P. Van Bendegam & B. Van Kerkove (Eds.), Perspectives on mathematical practices (pp. 135–151). Dordrecht: Springer.CrossRefGoogle Scholar
  3. Adleman, L. (1994). Molecular computation of solutions to combinatorial problems. Science, New Series, 266(5187), 1021–1024.Google Scholar
  4. Aigner, M., & Ziegler, G. M. (2002). Proofs from THE BOOK (2nd ed.). Berlin: Springer.Google Scholar
  5. Allen, C., & Hand, M. (2001). Primer in logic. Cambridge, MA: MIT Press.Google Scholar
  6. Azzouni, J. (2004). The derivation indicator view of mathematical practice. Philosophia Mathematica (3), 12, 81–105.Google Scholar
  7. Azzouni, J. (2006). Tracking reason. Oxford: Oxford University Press.CrossRefGoogle Scholar
  8. Cáceres, I., Lozana M., & Saladié, P. (2007). Evidence for Bronze Age cannibalism in El Mirador Cave (Sierra de Atapuerca, Burgos, Spain). American Journal of Physical Anthropology, 133, 899–917.CrossRefGoogle Scholar
  9. Copi, I., & Cohen, C. (1994). Introduction to logic (9th ed.). New York: Macmillan.Google Scholar
  10. Detlefsen, M., & Luker, M. (1980). The four-color theorem and mathematical proof. Journal of Philosophy, 77, 803–820.CrossRefGoogle Scholar
  11. Detlefsen, M. (1992). Poincaré against the logicians. Synthese, 90, 349–378.CrossRefGoogle Scholar
  12. Detlefsen, M. (1993). Poincaré vs. Russell on the role of logic in mathematics. Philosophia Mathematica (3), 1, 24–49.Google Scholar
  13. van Eemeren, F. H., & Grootendorst, R. (2003). A systematic theory of argumentation: The pragma-dialectical approach. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Euclid. (1956). The thirteen books of Euclid’s Elements (Vol. I). New York: Dover.Google Scholar
  15. Fallis, D. (1996). Mathematical proof and the reliability of DNA evidence. The American Mathematical Monthly, 103(6), 191–197.CrossRefGoogle Scholar
  16. Fallis, D. (1997). The epistemic status of probabilistic proofs. Journal of Philosophy, 94(4), 165–186.CrossRefGoogle Scholar
  17. Fallis, D. (2003). Intentional gaps in mathematical proofs. Synthese, 134, 45–69.CrossRefGoogle Scholar
  18. Finocchiaro, M. (1996). Critical thinking, critical reasoning and methodological reflection. Inquiry: Critical Thinking Across the Disciplines, 15, 66–79. (Reprinted in Finocchiaro, 2005, pp. 92–105).Google Scholar
  19. Finocchiaro, M. (2003a). Dialectic, evaluation and argument: Goldman and Johnson on the concept of argument. Informal Logic, 23, 19–49. (Reprinted in Finocchiaro, 2005, pp. 292–326).Google Scholar
  20. Finocchiaro, M. (2003b). Physical-mathematical reasoning: Galileo on the extruding power of terrestrial rotation. Synthese, 134, 217–244.CrossRefGoogle Scholar
  21. Finocchiaro, M. (2005). Arguments about arguments: Systematic, critical and historical essays in logical theory. Cambridge: Cambridge University Press.Google Scholar
  22. Franklin, J. (1987). Non-deductive logic in mathematics. British Journal for Philosophy of Science, 38(1), 1–18.CrossRefGoogle Scholar
  23. Gödel, K. (1983). What is Cantor’s continuum problem? In P. Benacerraf & H. Putnam (Eds.), Selected readings in philosophy of mathematics (pp. 470–485). Cambridge: Cambridge University Press. (Originally published 1947).Google Scholar
  24. Johnson, R. H. (2000). Manifest rationality: A pragmatic theory of argument. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  25. Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). New York: Plenum.CrossRefGoogle Scholar
  26. Krabbe, E. (1991). Quod erat demonstrandum: Wat kan en mag een argumentatietheorie zeggen over bewijzen? In M. M. H. Bax & W. Vuijk (Eds.), Thema’s in de Taalbeheersing: Lezingen van het VIOT-taalbeheersingscongres gehouden op 19, 20 en 21 december 1990 aan de Rijksuniversiteit Groningen (pp. 8–16). Dordrecht: ICG.Google Scholar
  27. Krabbe, E. (1997). Arguments, proofs and dialogues. In M. Astroh, D. Gerhardus & G. Heinzmann (Eds.), Dialogisches Handeln: Eine Festschrift für Kuno Lorenz (pp. 63–75). Heidelberg: Spektrum Akademischer Verlag. (This is an updated translation of (Krabbe 1991) and is reprinted in this volume)Google Scholar
  28. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery (edited by J. Worrall & E. Zahar). Cambridge: Cambridge University Press.Google Scholar
  29. Maddy, P. (1988). Believing the axioms, I and II. Journal of Symbolic Logic, 53(2), 482–511 and 53(3), 736–764.CrossRefGoogle Scholar
  30. Maddy, P. (1992). Realism in mathematics. Oxford: Clarendon Press.CrossRefGoogle Scholar
  31. Malone, M. (2003). Three recalcitrant problems of argument identification. Informal Logic, 23(3), 237–261.Google Scholar
  32. Mates, B. (1972). Elementary logic (2nd ed.). Oxford: Oxford University Press.Google Scholar
  33. Maxwell, E. A. (1959). Fallacies in mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Pólya, G. (1968). Mathematics and plausible reasoning (Vols. I and II). Princeton, NJ: Princeton University Press.Google Scholar
  35. Proclus. (1992). Commentary on the first book of Euclid’s Elements (Trans. by Glenn Morrow). Princeton, NJ: Princeton University Press.Google Scholar
  36. Putnam, H. (1975). What is mathematical truth? In H. Putnam (Ed.), Mathematics, matter and method: Philosophical papers (Vol. 1, pp. 60–78). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica (3), 7, 5–41.Google Scholar
  38. Sandifer, C. E. (2007). Divergent series. How Euler did it (pp. 177–184). Washington, DC: Mathematical Association of America.Google Scholar
  39. Scriven, M. (1976). Reasoning. New York: McGraw-Hill.Google Scholar
  40. Steiner, M. (1998). The applicability of mathematics as a philosophical problem. Cambridge, MA: Harvard University Press.Google Scholar
  41. Toulmin, S. E. (2003). The uses of argument. Updated edition (of 1958). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. Walton, D. (2006). Fundamentals of critical argumentation. Cambridge: Cambridge University Press.Google Scholar
  43. Walton, D., & Krabbe, E. (1995). Commitment in dialogue: Basic concepts of interpersonal reasoning. Albany, NY: State University of New York Press.Google Scholar
  44. Zermelo, E. (1908). A new proof of the possibility of well-ordering. In J. van Heijenoort (Ed.). (1967). From Frege to Godel: A source book in mathematical logic, 1879–1931 (pp. 183–198). Cambridge, MA: Harvard University Press. (Originally published in Mathematische Annalen, 65, 107–128)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of Nevada, Las VegasLas VegasUSA

Personalised recommendations