Advertisement

Introduction

  • Andrew Aberdein
  • Ian J. Dove
Chapter
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 30)

Abstract

The goal of this book is to explore the relationship between argumentation theory and the philosophy of mathematical practice. By ‘argumentation theory’ we intend the study of reasoning and argument, and especially those aspects not addressed (or not addressed well) by formal deduction. The great success of formal logic in the nineteenth and twentieth centuries led to an eclipse of informal techniques, but a revival began in the 1950s. These pioneers initiated a thriving research tradition with particular strengths in Canada and the Netherlands. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations, an issue most mathematicians ignore (rightly or wrongly). This leads to a closer relationship with history and sociology of mathematics, mathematics education, and mathematics itself. In the last decade philosophy of mathematical practice has been developed further by many authors, but the potential argumentation theory holds for this work has mostly been overlooked. This collection is designed to remedy that oversight.

Keywords

Mathematics Education Mathematical Proof Mathematical Reasoning Mathematical Practice Argumentation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aberdein, A. (2005). The uses of argument in mathematics. Argumentation, 19(3), 287–301.CrossRefGoogle Scholar
  2. Aberdein, A. (2006). Managing informal mathematical knowledge: Techniques from informal logic. In J. M. Borwein & W. M. Farmer (Eds.), MKM 2006, Vol. 4108 in LNAI (pp. 208–221). Berlin: Springer.Google Scholar
  3. Aberdein, A. (2007). The informal logic of mathematical proof. In B. Van Kerkhove & J. P. Van Bendegem (Eds.), Perspectives on mathematical practices: Bringing together philosophy of mathematics, sociology of mathematics, and mathematics education (pp. 135–151). Dordrecht: Springer.Google Scholar
  4. Aberdein, A. (2010). Observations on sick mathematics. In B. Van Kerkhove, J. P. Van Bendegem, & J. De Vuyst (Eds.), Philosophical perspectives on mathematical practice (pp. 269–300). London: College Publications.Google Scholar
  5. Aberdein, A. (2011). The dialectical tier of mathematical proof. In F. Zenker (Ed.), Argumentation: Cognition and community. Proceedings of the 9th international conference of the Ontario Society for the Study of Argumentation (OSSA). Windsor, ON: OSSA.Google Scholar
  6. Aberdein, A. (2013). Mathematical wit and mathematical cognition. Topics in Cognitive Science, 5(2), 231–250.CrossRefGoogle Scholar
  7. Azzouni, J. (2004). The derivation-indicator view of mathematical practice. Philosophia Mathematica, 12(2), 81–105.CrossRefGoogle Scholar
  8. Azzouni, J. (2009). Why do informal proofs conform to formal norms? Foundations of Science, 14(1–2), 9–26.CrossRefGoogle Scholar
  9. Baker, A. (2007). Is there a problem of induction for mathematics? In M. Leng, A. Paseau, & M. Potter (Eds.), Mathematical knowledge (pp. 59–73). Oxford: Oxford University Press.Google Scholar
  10. Baker, A. (2009). Non-deductive methods in mathematics. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/mathematics-nondeductive/. Cited 20 Mar 2011.
  11. Bartha, P. (2010). By parallel reasoning: The construction and evaluation of analogical arguments. New York: Oxford University Press.CrossRefGoogle Scholar
  12. Corfield, D. (2003). Towards a philosophy of real mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Dove, I. J. (2007). On mathematical proofs and arguments: Johnson and Lakatos. In F. H. Van Eemeren & B. Garssen (Eds.), Proceedings of the sixth conference of the International Society for the Study of Argumentation (Vol. 1, pp. 346–351). Amsterdam: Sic Sat.Google Scholar
  14. Dufour, M. (2011). Didactical arguments and mathematical proofs. In F. H. van Eemeren, B. Garssen, D. Godden, & Mitchell, G. (Eds.), Proceedings of the 7th conference of the International Society for the Study of Argumentation (pp. 390–397). Amsterdam: Rozenberg/Sic Sat.Google Scholar
  15. Epstein, R. L. (2006). Classical mathematical logic. Princeton, NJ: Princeton University Press.Google Scholar
  16. Epstein, R. L., & Kernberger, C. ([2005] 1998). Critical thinking. Belmont, CA: Wadsworth.Google Scholar
  17. Hahn, U., & Oaksford, M. (2007). The rationality of informal argumentation: A Bayesian approach to reasoning fallacies. Psychological Review, 114(3), 704–732.CrossRefGoogle Scholar
  18. Hersh, R. (Ed.). (2006). 18 Unconventional essays about the nature of mathematics. New York: Springer.Google Scholar
  19. Inglis, M., & Mejía-Ramos, J. P. (2009a). The effect of authority on the persuasiveness of mathematical arguments. Cognition and Instruction, 27(1), 25–50.CrossRefGoogle Scholar
  20. Inglis, M., & Mejía-Ramos, J. P. (2009b). On the persuasiveness of visual arguments in mathematics. Foundations of Science, 14(1–2), 97–110.CrossRefGoogle Scholar
  21. Inglis, M., Mejía-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66(1), 3–21.CrossRefGoogle Scholar
  22. Johnson, R. H. (2000). Manifest rationality: A pragmatic theory of argument. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  23. Knipping, C. (2003). Beweisprozesse in der Unterrichtspraxis: Vergleichende Analysen von Mathematikunterricht in Deutschland und Frankreich. Hildesheim: Franzbecker Verlag.Google Scholar
  24. Knipping, C. (2008). A method for revealing structures of argumentations in classroom proving processes. ZDM Mathematics Education, 40, 427–441.CrossRefGoogle Scholar
  25. Krabbe, E. C. W. (1985). Formal systems of dialogue rules. Synthese, 63, 295–328.CrossRefGoogle Scholar
  26. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229–269). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  27. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery (edited by J. Worrall & E. Zahar). Cambridge: Cambridge University Press.Google Scholar
  28. Larvor, B. (1998). Lakatos: An introduction. London: Routledge.Google Scholar
  29. Larvor, B. (2012). How to think about informal proofs. Synthese, 187, 715–730.CrossRefGoogle Scholar
  30. Mancosu, P. (Ed.). (2008). The philosophy of mathematical practice. Oxford: Oxford University Press.Google Scholar
  31. Newell, A. (1983). The heuristic of George Polya and its relation to artificial intelligence. In R. Groner, M. Groner, & W. F. Bischof (Eds.), Methods of heuristics (pp. 195–243). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  32. Pease, A. (2007). A computational model of Lakatos-style reasoning. PhD thesis, School of Informatics, University of Edinburgh. Online at http://hdl.handle.net/1842/2113. Cited 5 Feb 2012.
  33. Pease, A., Colton, S., Smaill, A., & Lee, J. (2005). Modelling Lakatos’s philosophy of mathematics. In L. Magnani & R. Dossena (Eds.), Computing, philosophy and cognition: Proceedings of the European computing and philosophy conference (ECAP 2004) (pp. 57–85). London: College Publications.Google Scholar
  34. Perelman, C., & Olbrechts-Tyteca, L. (1969). The new rhetoric: A treatise on argumentation. Notre Dame, IN: University of Notre Dame Press.Google Scholar
  35. Pólya, G. (1954). Mathematics and plausible reasoning (2 Vols.). Princeton, NJ: Princeton University Press.Google Scholar
  36. Powers, L. H. (1995). The one fallacy theory. Informal Logic, 17(2), 303–314.Google Scholar
  37. Reid, D., & Knipping, C. (2010). Proof in mathematics education: Research, learning and teaching. Rotterdam: Sense.Google Scholar
  38. Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  39. Toulmin, S., Rieke, R., & Janik, A. (1979). An introduction to reasoning. London: Macmillan.Google Scholar
  40. Van Bendegem, J. P. (1988). Non-formal properties of real mathematical proofs. In J. Leplin, A. Fine, & M. Forbes (Eds.), PSA: Proceedings of the biennial meeting of the philosophy of science association (vol. 1: Contributed Papers, pp. 249–254). East Lansing, MI: Philosophy of Science Association.Google Scholar
  41. Van Bendegem, J. P., & Van Kerkhove, B. (2009). Mathematical arguments in context. Foundations of Science, 14(1–2), pp. 45–57.CrossRefGoogle Scholar
  42. Van Eemeren, F. H., & Grootendorst, R. (2004). A systematic theory of argumentation: The pragma-dialectical approach. Cambridge: Cambridge University Press.Google Scholar
  43. Van Eemeren, F. H., & Houtlosser, P. (2002). Strategic manoeuvring in argumentative discourse: A delicate balance. In Van Eemeren, F. H. & Houtlosser, P. (Eds.), Dialectic and rhetoric: The warp and woof of argumentation analysis (pp. 131–159). Amsterdam: Kluwer.Google Scholar
  44. Van Kerkhove, B. (2005). Aspects of informal mathematics. In Sica, G. (Ed.), Essays on the foundations of mathematics and logic (pp. 268–351). Monza: Polimetrica International Scientific Publisher.Google Scholar
  45. Walton, D. N., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Zuckero, M. (2003). Three potential problems for Powers’ One-Fallacy Theory. Informal Logic, 23(2), 285–292.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Humanities and CommunicationFlorida Institute of TechnologyMelbourneUSA
  2. 2.Department of PhilosophyUniversity of Nevada, Las VegasLas VegasUSA

Personalised recommendations