Accurate Indoor Positioning Technique Using RSSI Assisted Inertial Measurement

  • Wallace Wong
  • Lin Shen Liew
  • Chean Hung Lai
  • Llewellyn Liu
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 235)


An indoor positioning technique based on the inertial measurement of the object and the received signal strength indicator (RSSI) measured from an active RFID tag placed on the object is presented. The inertial measurement complements the inaccuracy of the RSSI measurements, especially when the object is far away from RFID reader. Correspondingly, a strong RSSI reading when the object is near a RFID reader provides accurate information about the location of the object. This information could then be used to amend the position estimated from the inertial measurement. Experiment has shown that the proposed technique provides better positioning accuracy.


Positioning Indoor RSSI RFID Tracking and localization 


  1. 1.
    Kim D-S, Kim J, Kim S-H, Yoo SK (2008) Design of RFID based the patient management and tracking system in hospital. In: 30th annual international conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, pp 1459–1461Google Scholar
  2. 2.
    Tesoriero R, Gallud JA, Lozano M, Penichet VMR (2008) Using active and passive RFID technology to support indoor location-aware systems. IEEE Trans Consum Electron 54(2):578–583CrossRefGoogle Scholar
  3. 3.
    Polito S, Biondo D, Iera A, Mattei M, Molinaro A (2007) Performance evaluation of active RFID location systems based on RF power measures. In: IEEE 18th international symposium on personal, indoor and mobile radio communications. Athens, pp 1–5Google Scholar
  4. 4.
    Bouet M, dos Santos AL (2008) RFID tags: positioning principles and localization techniques. 1st IFIP Wireless Days, pp 1–5Google Scholar
  5. 5.
    Blumenthal J, Grossmann R, Golatowski F, Timmermann D (2007) Weighted centroid localization in zigbee based sensor networks. In: IEEE international symposium on intelligent signal processing, pp 1–6Google Scholar
  6. 6.
    Ni L, Liu Y, Lau YC, Patil A (2003) LANDMARC: indoor location sensing using active RFID. In: Proceeding of the 1st IEEE international conference on pervasive computing and communications. Fort Worth, pp 407–415Google Scholar
  7. 7.
    Khan MA, Antiwal VK (2009) Location estimation technique using extended 3-D LANDMARC algorithm for passive RFID tag. In: IEEE international advance computing conference, pp 249–253Google Scholar
  8. 8.
    Errington AFC, Daku BLF, Prugger AF (2010) Initial position estimation using RFID tags: a least-squares approach. IEEE Trans Instrum Meas 59(11):2863–2869Google Scholar
  9. 9.
    Paul AS, Wan EA (2009) RSSI based indoor localization and tracking using sigma point Kalman smoothers. IEEE J Sel Top Signal Process 3(5):860–873CrossRefGoogle Scholar
  10. 10.
    Fox V, Hightower J, Lin L, Schulz D, Borriello G (2003) Bayesian filtering for location estimation. IEEE Pervasive Comput 2(3):24–33Google Scholar
  11. 11.
    Li XR, Jilkov VP (2003) Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Trans Aerosp Electron Syst 39(4):1333–1364Google Scholar
  12. 12.
    Sahinoglu Z, Gezici S, Guvenc I (2008) Ultra-wideband positioning systems: theoretical limits, ranging algorithms, and protocols. Cambridge University Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Wallace Wong
    • 1
  • Lin Shen Liew
    • 1
  • Chean Hung Lai
    • 1
  • Llewellyn Liu
    • 1
  1. 1.Swinburne University of Technology (Sarawak Campus)KuchingMalaysia

Personalised recommendations