Production of Nanoporous Alumina and Surface Studies by Atomic Force Microscopy

  • B. E. Alpysbayeva
  • Kh. A. Abdullin
  • A. A. Karipkhanova
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 235)


Nanoporous alumina is formed by two-step anodization process on an aluminum foil (99.99 %). Process of anodization allows to generate stable patches of nanoporous alumina and can affect the size and depth of the nanopores. By varying the parameters of anodization process we can control the growth of pores and their size. The properties of alumina film were studied by atomic force microscopy (AFM) and scanning electron microscope (SEM). The diameters of pores were found to be dependent on the applied voltage. Nanoporous alumina can be used as different membranes, test samples, template for nanostructured materials. The AFM is an appropriate method to study the size and depth of nanopores and periodicity of surface features.


AFM image SEM image Alumina film Anodization Nanopores Acidic solution 


  1. 1.
    Binnig G, Quate CF, Berger Ch (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933CrossRefGoogle Scholar
  2. 2.
    Richard Bowen W, Hilal N (2009) Atomic force microscopy in process engineering: an introduction to AFM for improved processes and products, p 352Google Scholar
  3. 3.
    Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gosele U (2008) Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat Nanotechnol 3:234–239Google Scholar
  4. 4.
    Wang Z, Brust M (2007) Fabrication of nanostructure via self-assembly of nanowires within the AAO template. Nanoscale Res Lett 2:34–39Google Scholar
  5. 5.
    Pacholski C, Sartor M, Sailor MJ, Cunin F, Miskelly GM (2005) Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy J Am Chem Soc 127:11636Google Scholar
  6. 6.
    Gao J, Gao T, Li YY, Sailor MJ (2002) Langmuir 18:2229CrossRefGoogle Scholar
  7. 7.
    Li CP, Roshchin IV, Batlle X, Viret M, Ott F, Schuller IK (2006) J Appl Phys 100:074318Google Scholar
  8. 8.
    Hansma HG, Sinsheimer RL, Groppe J, Bruice TC, Elings V, Bezanilla M, Mastrangelo IA, Hough PVC, Hansma PK (1993) Recent advances in atomic-force microscopy of DNA. Scanning 15(5):296–299CrossRefGoogle Scholar
  9. 9.
    Hansma HG, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64(13):1738–1740CrossRefGoogle Scholar
  10. 10.
    Zhong Q, Inniss D, Kjoller K, Elings V (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692Google Scholar
  11. 11.
    Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211CrossRefGoogle Scholar
  12. 12.
    Mo XM, Xu CY, Kotaki M, Ramakrishna S (2004) Electrospun P (LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25(10):1883–1890CrossRefGoogle Scholar
  13. 13.
    Chu S-Z, Wada K et al (2005) Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Adv Mater 17:2115–2119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • B. E. Alpysbayeva
    • 1
  • Kh. A. Abdullin
    • 2
  • A. A. Karipkhanova
    • 3
  1. 1.Laboratory of EngineeringAl-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.National Nanotechnological Laboratory Open TypeAlmatyKazakhstan
  3. 3.Department of Physics and TechniquesAl-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations