Advertisement

Microstructure Evolution of the Cu-Cr Hypereutectic Alloys During Directional Solidification

  • ZhongPing Que
  • JeHyun Lee
  • WeiLi Cheng
  • SeungZeon Han
  • HyungMin Jung
  • KwangJun Euh
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 235)

Abstract

The effects of directional solidification velocity, temperature and alloy composition on the microstructure evolution of Cu-Cr alloys were investigated systematically. The microstructure observations showed that the halo α-Cu phase formed from the Cu-rich solute neighbor to primary Cr-rich phase, and followed by the growth of rod-like coupled eutectic. The Cr-rich phase coarsened and the eutectic spacing increased with the decreasing growth velocity and the increasing solidification temperature. Further, the eutectic and the primary phase transformation temperatures in hypereutectic alloys were determined by the DSC tests. The eutectic temperature has been established to be 1079 ± 0.5 °C.

Keywords

Solidification Microstructure evolution Interface Cu-Cr alloys Solidification velocity Solidification temperature 

Notes

Acknowledgments

This research was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Korean Government (MCIE), the National Research Foundation of Korea (NRF) funded by the Korean Government (MEST) (No.2011-0030801) and the Fund for Young Scholars of Taiyuan University of Technology (No. 2012L053).

References

  1. 1.
    Zhou ZM, Wang YP, Gao J, Kolbe M (2005) Microstrue of rapidly solidified Cu-25wt.% Cr alloys. Mater Sci Eng A 398:318–322Google Scholar
  2. 2.
    Peng LM, Mao XM, Xu KD, Ding WJ (2005) Property and thermal stability of in situ composite Cu-Cr alloy contact cable. J Mater Process Technol 166:193–198CrossRefGoogle Scholar
  3. 3.
    Jin Y, Adachi K, Takeuchi T, Suzuki HG (1997) Correlation between the electrical conductivity and anging treatment for a Cu-15 wt% Cr alloy composite formed in situ. Mater Lett 32:307–311CrossRefGoogle Scholar
  4. 4.
    Gao J, Wang YP, Zhou ZM, Kolbe M (2007) Phase separation in undercooled Cu-Cr melts. Mater Sci Eng A 449–451:654–657Google Scholar
  5. 5.
    Que ZP, Lee JH, Jung HM, Shin JH, Han SZ, Euh KJ (2013) Microstructure evolution in Cu-1.54 wt% Cr alloy during directingal solidification. J Crystal Growth 362:58–61CrossRefGoogle Scholar
  6. 6.
    Morris DG, Morris MA (1988) Rapid solidification and mechanical alloying techniques applied to Cu-Cr alloys. Mater Sci Eng A 104:201–213CrossRefGoogle Scholar
  7. 7.
    Lee JH, Verhoeven JD (1994) Metastable eutectic in Ni-Al alloys. J Phase Equilib 15:136–146CrossRefGoogle Scholar
  8. 8.
    Chakrabarti DJ, Laughlin DE (1984) The Cr-Cu (chromium-copper) system. Bull Alloy Phase Diagr 5:59–68CrossRefGoogle Scholar
  9. 9.
    Kofler A (1965) Precipitation anomalies during isothermal crystallization from undercooled binary organic melts. J Aust Inst Met 10:132Google Scholar
  10. 10.
    Nave MD, Dahle AK, StJohn DH (2002) Halo formation in directional solidification. Acta Mater 50:2837–2849CrossRefGoogle Scholar
  11. 11.
    Sundquist BE, Bruscato R, Mondolfo LF (1962–1963) The surface energy of solid metals. J Inst Met 91:204Google Scholar
  12. 12.
    Gigliotti MFX Jr, Colligan GA, Powell GLF (1970) Halo formation in eutectic alloy systems. Metall Trans 1:891–897CrossRefGoogle Scholar
  13. 13.
    Bluni ST, Notis MR, Marder AR (1995) Nucleation characteristics and microstructure in off-eutectic Al-Zn alloys. Acta Metal Mater 43:1775–1782CrossRefGoogle Scholar
  14. 14.
    Milenkovic S, Schneider A, Frommeyer G (2011) Constitutional and microstructural investigation of the pseudobinary NiAl–W system. Intermetallics 19:342–349Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • ZhongPing Que
    • 1
    • 2
  • JeHyun Lee
    • 2
  • WeiLi Cheng
    • 1
  • SeungZeon Han
    • 3
  • HyungMin Jung
    • 2
  • KwangJun Euh
    • 3
  1. 1.Department of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Department of Materials Science and EngineeringChangwon National UniversityChangwonSouth Korea
  3. 3.Grain Structure Control Research GroupKorea Institute of Materials ScienceChangwonSouth Korea

Personalised recommendations