Searching for New Antimicrobial Targets: Na+ Cycle in Energetics of Bacterial Pathogens

  • Pavel Dibrov
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Outbreaks of microbial infections (tuberculosis, cholera, etc.) endangering lives of civilians and military personnel alike are inevitable consequences of social and military crises. The situation is further exacerbated by the current global crisis of antimicrobial therapy caused by common misuse of broad-range antibiotics and the resulting proliferation of drug-resistant strains. Despite the resurrected interest in alternative approaches, such as the development of adjunctive immunotherapy, search for new targets for prospective antimicrobials apparently remains the most viable option in the management of microbial infections. A consensus is emerging that a new generation of antimicrobial remedies should include precisely targeted, ideally – pathogen-specific drugs. As it is evident from cross-genome comparisons, Na+ pumping systems of different types (comprising a “sodium cycle” in bacterial membrane energetics) are “overrepresented” in microbial pathogens. This might be due to a peculiar evolutionary relationship between the “mainstream” type of bacterial energetics based on the transmembrane circulation of proton (H+ cycle) and more archaic Na+ cycle. Wide spreading of elements of Na+ cycle among different pathogens makes these systems attractive targets for prospective development of novel, narrowly targeted antimicrobials. In this communication, a “target potential” of the primary respiratory Na+ pump, NQR, and secondary Na+ pumps, NhaA/B, is discussed.


Porphyromonas Gingivalis Yersinia Pestis Buruli Ulcer Ubiquinone Oxidoreductase Obligate Intracellular Parasite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Many thanks are due to Dr. Deborah Court (University of Manitoba) for critical reading of the manuscript. Work in the author’s lab is currently supported by the Natural Sciences and Engineering Research Council of Canada (operating grant No. 227414-09).


  1. 1.
    Spellberg B, Powers JH, Brass EP et al (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38:1279–1286PubMedCrossRefGoogle Scholar
  2. 2.
    Casadevall A (2006) The third age of antimicrobial therapy. Clin Infect Dis 42:1414–1416PubMedCrossRefGoogle Scholar
  3. 3.
    Casadevall A (1996) Crisis in infectious diseases: time for a new paradigm? Clin Infect Dis 23:790–794PubMedCrossRefGoogle Scholar
  4. 4.
    Skulachev VP (1992) The laws of cell energetics. Eur J Biochem 208:203–209PubMedCrossRefGoogle Scholar
  5. 5.
    Hilpert W, Schink B, Dimroth P (1984) Life by a new decarboxylation-dependent energy conservation mechanism with sodium as coupling ion. EMBO J 3:1665–1670PubMedGoogle Scholar
  6. 6.
    Speelmans G, Poolman B, Abee T, Konings WN (1993) Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci USA 90:7975–7979. doi: 10.1073/pnas.90.17.7975 PubMedCrossRefGoogle Scholar
  7. 7.
    Dimroth P, Hilbi H (1997) Enzymic and genetic basis for bacterial growth on malonate. Mol Microbiol 25:3–10PubMedCrossRefGoogle Scholar
  8. 8.
    Skulachev VP (1985) Membrane-linked energy transductions. Bioenergetic functions of sodium: H+ is not unique as a coupling ion. Eur J Biochem 151:199–208PubMedCrossRefGoogle Scholar
  9. 9.
    Krulwich TA (1995) Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410PubMedCrossRefGoogle Scholar
  10. 10.
    Mager T, Rimon A, Padan E et al (2011) Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli. J Biol Chem 286:23570–23581PubMedCrossRefGoogle Scholar
  11. 11.
    Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288:223C–239CCrossRefGoogle Scholar
  12. 12.
    Mulkidjanian AY, Dibrov P, Galperin MY (2008) The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta 1777:985–992PubMedCrossRefGoogle Scholar
  13. 13.
    Häse CC, Fedorova N, Galperin MY et al (2001) Sodium cycle in bacterial pathogens. Evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65:353–370PubMedCrossRefGoogle Scholar
  14. 14.
    Dibrov P, Dibrov E, Pierce GN et al (2004) Salt in the wound: a possible role of Na+ gradient in chlamydial infection. J Mol Microbiol Biotechnol 8:1–6PubMedCrossRefGoogle Scholar
  15. 15.
    Dzioba J, Häse CC, Gosink K et al (2003) Experimental verification of a sequence-based prediction:F0F1-type ATPase of Vibrio cholerae transports protons, not Na+ ions. J Bacteriol 185:674–678PubMedCrossRefGoogle Scholar
  16. 16.
    Häse CC, Barquera B (2001) Role of sodium bioenergetics in Vibrio cholerae. Biochim Biophys Acta 1505:169–178PubMedCrossRefGoogle Scholar
  17. 17.
    Kato S, Yumoto I (2000) Detection of the Na+-translocating NADH-quinone reductase in marine bacteria using a PCR technique. Can J Microbiol 46:325–332PubMedGoogle Scholar
  18. 18.
    Huq A, West PA, Small EB et al (1984) Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms. Appl Environ Microbiol 48:420–424PubMedGoogle Scholar
  19. 19.
    Cruz WT, Nedialkov YA, Thacker BJ et al (1996) Molecular characterization of a common 48-kilodalton outer membrane protein of Actinobacillus pleuropneumoniae. Infect Immun 64:83–90PubMedGoogle Scholar
  20. 20.
    Andries K, Verhasselt P, Guillemont J et al (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227PubMedCrossRefGoogle Scholar
  21. 21.
    Achtman M, Zurth K, Morelli G et al (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96:14043–14048PubMedCrossRefGoogle Scholar
  22. 22.
    Chain PS, Carniel E, Larimer FW et al (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 101:13826–13831PubMedCrossRefGoogle Scholar
  23. 23.
    Brubaker RR (2007) How the structural gene products of Yersinia pestis relate to virulence? Future Microbiol 2:377–385PubMedCrossRefGoogle Scholar
  24. 24.
    Colwell RR (1996) Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031PubMedCrossRefGoogle Scholar
  25. 25.
    Häse CC, Mekalanos JJ (1999) Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 96:3184–3187CrossRefGoogle Scholar
  26. 26.
    Brubaker RR (2005) Influence of Na+, dicarboxylic amino acids, and pH in modulating the low-calcium response of Yersinia pestis. Infect Immun 73:4743–4752PubMedCrossRefGoogle Scholar
  27. 27.
    Miller CJ, Drasar BS, Feachem RG (1984) Response of toxigenic Vibrio cholerae 01 to physico-chemical stresses in aquatic environments. J Hyg 93:475–495PubMedCrossRefGoogle Scholar
  28. 28.
    Bakeeva LE, Chumakov KM, Drachev AL et al (1986) The sodium cycle. III. Vibrio alginolyticus resembles Vibrio cholerae and some other vibriones by flagellar motor and ribosomal 5S-RNA structures. Biochim Biophys Acta 850:466–472PubMedCrossRefGoogle Scholar
  29. 29.
    Dibrov P (2001) Membrane bioenergetics and virulence: problems and prospects. Trends Microbiol 9:13–14PubMedCrossRefGoogle Scholar
  30. 30.
    Heeseman J, Sing A, Trülzsch K (2006) Yersinia’s stratagem: targeting innate and adaptive immune defence. Curr Opin Microbiol 9:1–7CrossRefGoogle Scholar
  31. 31.
    Padan E, Tzubery T, Herz K et al (2004) NhaA of Escherichia coli as a model of a pH-­regulated Na+/H+ antiporter. Biochim Biophys Acta 1658:2–13PubMedCrossRefGoogle Scholar
  32. 32.
    Padan E, Venturi M, Gerchman Y et al (2001) Na+/H+ antiporters. Biochim Biophys Acta 1505:144–157PubMedCrossRefGoogle Scholar
  33. 33.
    Padan E (2008) The enlightening encounter between structure and function in the NhaA Na+-H+ antiporter. Trends Biochem Sci 33:435–443PubMedCrossRefGoogle Scholar
  34. 34.
    Cornelis GR (2002) The Yersinia Ysc-Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol 3:742–752PubMedCrossRefGoogle Scholar
  35. 35.
    Cornelis GR (2000) Molecular and cell biology aspects of plague. Proc Natl Acad Sci USA 97:8778–8783PubMedCrossRefGoogle Scholar
  36. 36.
    Viboud GI, Bliska JB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59:69–89PubMedCrossRefGoogle Scholar
  37. 37.
    Wilharm G, Lehmann V, Krauss K et al (2004) Yersinia enterocolitica Type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect Immun 72:4004–4009PubMedCrossRefGoogle Scholar
  38. 38.
    Brubaker RR (2007) Intermediary metabolism, Na+, the low-calcium response, and acute disease. Adv Exp Med Biol 603:116–129PubMedCrossRefGoogle Scholar
  39. 39.
    Fowler JM, Wulff CR, Straley SC, Brubaker RR (2009) Growth of calcium-blind mutants of Yersinia pestis at 37°C in permissive Ca2+-deficient environments. Microbiology 155:2509–2521PubMedCrossRefGoogle Scholar
  40. 40.
    Häse CC, Mekalanos JJ (1998) TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 95:730–734PubMedCrossRefGoogle Scholar
  41. 41.
    Zhou W, Bertsova Y, Feng B et al (1999) Sequencing and preliminary characterization of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio harveyi. Biochemistry 38:16246–16252PubMedCrossRefGoogle Scholar
  42. 42.
    Bogachev AV, Verkhovsky MI (2005) Na+-translocating NADH:quinone oxidoreductase: progress achieved and prospects of investigations. Biochemistry (Moscow) 70:177–185Google Scholar
  43. 43.
    Turk K, Puhar A, Neese F et al (2004) NADH oxidation by the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae - functional role of the NqrF subunit. J Biol Chem 279:21349–21355PubMedCrossRefGoogle Scholar
  44. 44.
    Bourne RM, Rich PR (1992) Characterization of a sodiummotive NADH:ubiquinone oxidoreductase. Biochem Soc Trans 20:577–582PubMedGoogle Scholar
  45. 45.
    Asano M, Hayashi M, Unemoto T et al (1985) Ag+-sensitive NADH dehydrogenase in the Na+-motive respiratory chain of the marine bacterium Vibrio alginolyticus. Agric Biol Chem 49:2813–2817CrossRefGoogle Scholar
  46. 46.
    Hayashi M, Miyoshi T, Sato M et al (1992) Properties of respiratory chain-linked Na+-independent NADH-quinone reductase in a marine Vibrio alginolyticus. Biochim Biophys Acta 1099:145–151PubMedCrossRefGoogle Scholar
  47. 47.
    Nakayama Y, Hayashi M, Yoshikawa K et al (1999) Inhibitor studies of a new antibiotic, korormicin, 2-n-heptyl-4-hydroxyquinoline N-oxide and Ag+ toward the Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. Biol Pharm Bull 22:1064–1067PubMedCrossRefGoogle Scholar
  48. 48.
    Dibrov P, Dzioba JL, Gosink KK et al (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670PubMedCrossRefGoogle Scholar
  49. 49.
    Spacciapoli P, Buxton D, Rothstein D et al (2001) Antimicrobial activity of silver nitrate against periodontal pathogens. J Periodont Res 36:108–113PubMedCrossRefGoogle Scholar
  50. 50.
    Miyamoto M, Yamaguchi Y, Sasatsu M (2000) Disinfectant effects of hot water, ultraviolet light, silver ions and chlorine on strains of Legionella and nontuberculous mycobacteria. Microbios 101:7–13PubMedGoogle Scholar
  51. 51.
    Machana ZA, Taylor GW, Pitt TL et al (1992) 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J Antimicrob Chemother 30:615–623CrossRefGoogle Scholar
  52. 52.
    Krab K, Wikstrom M (1980) Effect of 2-n-heptyl-4-hydroxyquinoline N-oxide on proton permeability of the mitochondrial membrane. Biochem J 186:637–639PubMedGoogle Scholar
  53. 53.
    Yoshikawa K, Takadera T, Adachi K et al (1997) Korormicin, a novel antibiotic specifically active against marine gram-negative bacteria, produced by a marine bacterium. J Antibiot (Tokyo) 50:949–953CrossRefGoogle Scholar
  54. 54.
    Hayashi M, Shibata N, Nakayama Y, Yoshikawa K, Unemoto T (2002) Korormicin insensitivity in Vibrio alginolyticus is correlated with a single point mutation of Gly-140 in the NqrB subunit of the Na+-translocating NADH-quinone reductase. Arch Biochem Biophys 401:173–177PubMedCrossRefGoogle Scholar
  55. 55.
    Pinner E, Padan E, Schuldiner S (1994) Kinetic properties of NhaB, a Na+/H+ antiporter from Escherichia coli. J Biol Chem 269:26274–26279PubMedGoogle Scholar
  56. 56.
    Dover N, Padan E (2001) Transcription of nhaA, the main Na+/H+ antiporter of Escherichia coli, is regulated by Na+ and growth phase. J Bacteriol 183:644–653PubMedCrossRefGoogle Scholar
  57. 57.
    Williams SG, Carmel-Harel O, Manning PA (1998) A functional homolog of Escherichia coli NhaR in Vibrio cholerae. J Bacteriol 180:762–765PubMedGoogle Scholar
  58. 58.
    Dibrov P, Rimon A, Dzioba J et al (2005) 2-Aminoperimidine, a specific inhibitor of bacterial NhaA Na+/H+ antiporters. FEBS Lett 579:373–378PubMedCrossRefGoogle Scholar
  59. 59.
    Vimont S, Berche P (2000) NhaA, an Na+/H+ antiporter involved in environmental survival of Vibrio cholerae. J Bacteriol 182:2937–2944PubMedCrossRefGoogle Scholar
  60. 60.
    Pinner E, Padan E, Schuldiner S (1995) Amiloride and harmaline are potent inhibitors of NhaB, a Na+/H+ antiporter from Escherichia coli. FEBS Lett 365:18–22PubMedCrossRefGoogle Scholar
  61. 61.
    Shalitin Y, Segal D. Gur D (2002) 2-Aminoperimidine is an effector of cholinesterases. In: Proceedings of the XIth international symposium on cholinergic mechanisms-function and dysfunction, St. Moritz, 5–9 May 2002Google Scholar
  62. 62.
    Resch CT, Winogrodzki JL, Häse CC et al (2011) Insights into the biochemistry of the ubiquitous NhaP family of cation/H+ antiporters. Biochem Cell Biol 89:130–137PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations