The Protective Effects of Natural Polyphenolic Complexes of Grape Wine on Organisms Exposed to Oxidative and Nitrosative Stress Under Diabetes Mellitus

  • Andrew R. Hnatush
  • Victor R. Drel
  • Natalia O. Hanay
  • Anatolij Ya. Yalaneckyy
  • Volodymyr I. Mizin
  • Natalia O. Sybirna
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Peripheral nerve damage is a significant complication of diabetes mellitus. The ingestion of polyphenols available naturally in a variety of plant products may provide impressive protection against such damage. The natural polyphenol complex of grape wine has a significant anti-diabetic effect. It can protect against dehydration at the level of the whole organism and deter free radical-induced damage to the sciatic nerve, the spinal cord, kidney and retina. The levels of nitrosylated and PARylated proteins can be restored to near control levels by the extract. The biochemical mechanisms of action of the natural polyphenol complex of grape wine require further research, but may be considered as a valuable therapeutic approach for the treatment of diabetic complications.


Spinal Cord Dorsal Root Ganglion Sciatic Nerve Nitrosative Stress Grape Wine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We express our sincere gratitude to the Western Ukrainian Biomedical Research Center (WUBMRC, 2011–2012) for a grant provided to conduct this research.


  1. 1.
    Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625PubMedCrossRefGoogle Scholar
  2. 2.
    Ceriello A (2002) Nitrotyrosine: new findings as a marker of postprandial oxidative stress. Int J Clin Pract Suppl 129:51–58PubMedGoogle Scholar
  3. 3.
    Coppey LJ, Gellett JS, Davidson EP et al (2001) Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Br J Pharmacol 134(1):21–29PubMedCrossRefGoogle Scholar
  4. 4.
    Crawford TN, Alfaro DV 3rd, Kerrison JB et al (2009) Diabetic retinopathy and angiogenesis. Curr Diabetes Rev 5(1):8–13PubMedCrossRefGoogle Scholar
  5. 5.
    Daglia M, Papetti A, Grisoli P et al (2007) Plant and fungal food components with potential activity on the development of microbial oral diseases. Agric Food Chem 55(13):5038–5042CrossRefGoogle Scholar
  6. 6.
    Dobretsov M, Romanovsky D, Stimers JR (2007) Early diabetic neuropathy: triggers and mechanisms. World J Gastroenterol 13(2):175–191PubMedGoogle Scholar
  7. 7.
    Drel VR, Gnatush AR, Yalaneckyy AY et al (2010) Grape wine polyphenols prevents nitrotyrosine accumulations and activation of PARP-1 in the rat retina under streptozotocin-induced diabetes mellitus. Med Chem 1(42):25–33Google Scholar
  8. 8.
    Drel VR, Pacher P, Ali TK et al (2008) Aldose reductase inhibitor fidarestat counteracts diabetes-­associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int J Mol Med 21(6):667–676PubMedGoogle Scholar
  9. 9.
    Drel VR, Pacher P, Vareniuk I et al (2007) A peroxynitrite decomposition catalyst counteracts sensory neuropathy in streptozotocin-diabetic mice. Eur J Pharmacol 569(1–2):48–58PubMedCrossRefGoogle Scholar
  10. 10.
    Drel VR, Pacher P, Vareniuk I et al (2007) Evaluation of the peroxynitrite decomposition catalyst Fe(III) tetra-mesitylporphyrin octasulfonate on peripheral neuropathy in a mouse model of type 1 diabetes. Int J Mol Med 20:783–792PubMedGoogle Scholar
  11. 11.
    Drel VR, Xu W, Zhang J et al (2009) Poly(ADP-ribose)polymerase inhibition counteracts cataract formation and early retinal changes in streptozotocin-diabetic rats. Invest Ophthalmol Vis Sci 50(4):1778–1790PubMedCrossRefGoogle Scholar
  12. 12.
    Du Y, Smith MA, Miller CM et al (2002) Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine. J Neurochem 80:771–779PubMedCrossRefGoogle Scholar
  13. 13.
    Gouni-Berthold I, Krone W (2006) Favorable effects of decreasing lipids in patients with diabetes mellitus. Med Klin (Munich) 101(1):100–105Google Scholar
  14. 14.
    Kitabchi A, Umpierrez G, Fisher J et al (2008) Thirty years of personal experience in hyperglycemic crises: diabetic ketoacidosis and hyperglycemic hyperosmolar state. J Clin Endocrinol Metabol 93(5):1541–1552CrossRefGoogle Scholar
  15. 15.
    Landau D, Israel E, Rivkis I et al (2003) The effect of growth hormone on the development of diabetic kidney disease in rats. Nephrol Dial Transplant 18(4):694–702PubMedCrossRefGoogle Scholar
  16. 16.
    Marfella R, Cacciapuoti F, Siniscalchi M et al (2006) Effect of moderate red wine intake on cardiac prognosis after recent acute myocardial infarction of subjects with type 2 diabetes mellitus. Diabet Med 23(9):974–981PubMedCrossRefGoogle Scholar
  17. 17.
    Montilla P, Barcos M, Munoz M et al (2005) Red wine prevents brain oxidative stress and nephropathy in streptozotocin-induced diabetic rats. Biochem Mol Biol 38(5):539–544CrossRefGoogle Scholar
  18. 18.
    Napoli C, Balestrieri M, Sica V et al (2008) Beneficial effects of low doses of red wine consumption on perturbed shear stress-induced atherogenesis. Heart Vessels 23(2):124–133PubMedCrossRefGoogle Scholar
  19. 19.
    Nogueira-Machado JA, Chaves MM (2008) From hyperglycemia to AGE-RAGE interaction on the cell surface: a dangerous metabolic route for diabetic patients. Expert Opin Ther Targets 12(7):871–882PubMedCrossRefGoogle Scholar
  20. 20.
    Obrosova IG, Drel VR, Oltman CL et al (2007) Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab 293:E1645–E1655PubMedCrossRefGoogle Scholar
  21. 21.
    Obrosova IG, Xu W, Lyzogubov VV et al (2008) PARP inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy. Free Radic Biol Med 44(6):972–981PubMedCrossRefGoogle Scholar
  22. 22.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424PubMedCrossRefGoogle Scholar
  23. 23.
    Palsamy P, Subramanian S (2008) Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin-nicotinamide induced experimental diabetic rats. Biomed Pharmacother 62(9):598–605PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Andrew R. Hnatush
    • 1
  • Victor R. Drel
    • 1
  • Natalia O. Hanay
    • 1
  • Anatolij Ya. Yalaneckyy
    • 1
  • Volodymyr I. Mizin
    • 2
  • Natalia O. Sybirna
    • 1
  1. 1.Ivan Franko National University of LvivLvivUkraine
  2. 2.Division of Health and RehabilitationCrimean State Humanitarian UniversityYalta, CrimeaUkraine

Personalised recommendations