Life in Magnesium- and Calcium-Rich Hypersaline Environments: Salt Stress by Chaotropic Ions

  • Aharon Oren
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 27)


Most hypersaline environments on Earth are derived from seawater by evaporation. Seawater is dominated by sodium chloride as the main salt. Sodium constitutes 86 % of the cation sum (0.482 M in “standard” seawater of 35 ‰ salinity), with lower concentrations of Mg2+ (0.056 M), K+ (0.011 M), and Ca2+ (0.011 M). When seawater evaporates to form hypersaline brines (so-called thalassohaline brines), the ionic composition of seawater is initially preserved. When the salinity increases, sequential precipitation of calcium carbonate (calcite, at total salt concentrations above 6–8 %) and calcium sulfate (as gypsum, CaSO4⋅2H2O, that starts precipitating when the total dissolved salt concentration has increased to >120–150 g/l) causes minor changes in the ionic rations. Only during the precipitation of NaCl as halite, when the total salt concentration exceeds 300–350 g/l, do we witness a great change in the ratio between monovalent and divalent cations. The bittern brines that remain after most of the sodium ions have been removed from the water are dominated by magnesium as the main cation.


Hypersaline Environment Halophilic Microorganism Halobacterium Salinarum Brine Pool Total Salt Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson GC (1958) Some limnological features of a shallow saline meromictic lake. Limnol Oceanogr 3:250–270Google Scholar
  2. Antunes A, Tiborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220PubMedCrossRefGoogle Scholar
  3. Antunes A, Kamanda Ngugi D, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brines. Environ Microbiol Rep 3:416–433PubMedCrossRefGoogle Scholar
  4. Baas-Becking LGM (1930) Observations on Dunaliella viridis Teodoresco. In: Contributions in marine science. Stanford University, Palo Alto, pp 102–114Google Scholar
  5. Baas-Becking LGM (1931) Salt effects on swarmers of Dunaliella viridis Teod. J Gen Physiol 14:765–779PubMedCrossRefGoogle Scholar
  6. Baas-Becking LGM (1934) Geobiologie of Inleiding tot de Milieukunde. W.P. van Stockum & Zoon, Den HaagGoogle Scholar
  7. Baati H, Jarboui R, Garshallah N, Sghir A, Ammar E (2011) Molecular community analysis of magnesium-rich bittern brine recovered from a Tunisian solar saltern. Can J Microbiol 57:975–981PubMedCrossRefGoogle Scholar
  8. Banciu HL, Sorokin DY (2013) Adaptation mechanisms in haloalkaliphilic and natronophilic bacteria. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles – organisms living under multiple stress. Springer, Dordrecht, 27:121–178Google Scholar
  9. Belliveau JW, Lanyi JK (1978) Calcium transport in Halobacterium halobium envelope vesicles. Arch Biochem Biophys 186:98–105PubMedCrossRefGoogle Scholar
  10. Beyth M (1980) Recent evolution and present stage of Dead Sea brines. In: Nissenbaum A (ed) Hypersaline brines and evaporitic environments. Elsevier, Amsterdam, pp 155–165CrossRefGoogle Scholar
  11. Bodaker I, Béjà O, Rosenberg M, Oren A, Hindiyeh MY, Malkawi HI (2009) Archaeal diversity in the Dead Sea: microbial survival under increasingly harsh conditions. In: Oren A, Naftz DL, Palacios P, Wurtsbaugh WA (eds) Saline lakes around the world: unique systems with unique values. The S.J. and Jessie E. Quinney Natural Resources Research Library, College of Natural Resources, Utah State University, Logan, pp 137–143Google Scholar
  12. Bodaker I, Sharon I, Suzuki MT, Reingersch R, Shmoish M, Andreishcheva E, Sogin ML, Rosenberg M, Belkin S, Oren A, Béjà O (2010) The dying Dead Sea: comparative community genomics in an increasingly extreme environment. ISME J 4:399–407PubMedCrossRefGoogle Scholar
  13. Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodríguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169PubMedCrossRefGoogle Scholar
  14. Borin S, Crotti E, Mapelli F, Tamagnini I, Corselli C, Daffonchio D (2008) DNA is preserved and maintains transforming potential after contact with brines of the deep anoxic hypersaline lakes of the Eastern Mediterranean Sea. Saline Syst 4:10PubMedCrossRefGoogle Scholar
  15. Brock TD (1979) Ecology of saline lakes. In: Shilo M (ed) Strategies of life in extreme environments. Verlag Chemie, Weinheim, pp 29–47Google Scholar
  16. Brown AD (1990) Microbial water stress physiology. Principles and perspectives. Wiley, ChichesterGoogle Scholar
  17. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392PubMedCrossRefGoogle Scholar
  18. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234PubMedCrossRefGoogle Scholar
  19. Cohen S, Oren A, Shilo M (1983) The divalent cation requirement of Dead Sea halobacteria. Arch Microbiol 136:184–190CrossRefGoogle Scholar
  20. de Médicis E, Paquette J, Gauthier J-J, Shapcott D (1986) Magnesium and manganese content of halophilic bacteria. Appl Environ Microbiol 52:567–573PubMedGoogle Scholar
  21. Edgerton ME, Brimblecombe P (1981) Thermodynamics of halobacterial environments. Can J Microbiol 27:899–909PubMedCrossRefGoogle Scholar
  22. Gibson MM, Bagga DA, Miller CG, Maguire ME (1991) Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system. Mol Microbiol 5:2753–2762PubMedCrossRefGoogle Scholar
  23. Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359:1249–1266PubMedCrossRefGoogle Scholar
  24. Hallsworth JE, Prior BA, Iwahara M, Nomura Y, Timmis KN (2003) Compatible solutes protect chaotrope (ethanol)-induced, nonosmotic water stress. Appl Environ Microbiol 69:7032–7034PubMedCrossRefGoogle Scholar
  25. Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D’Auria G, de Lima Alves F, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813PubMedCrossRefGoogle Scholar
  26. Hocking AD, Pitt JI (1999) Xeromyces bisporus Frazer. In: Robinson RK, Batt CA, Patel PD (eds) Encyclopaedia of food microbiology, vol 3. Academic, London, pp 2329–2333CrossRefGoogle Scholar
  27. Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Zweite Mittheilung. Arch Exp Pathol Pharmakol 24:247–260CrossRefGoogle Scholar
  28. Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the dry valleys of Antarctica. Science 176:242–245PubMedCrossRefGoogle Scholar
  29. Javor BJ (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol Oceanogr 28:153–159CrossRefGoogle Scholar
  30. Javor BJ (1984) Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl Environ Microbiol 48:352–360PubMedGoogle Scholar
  31. Javor BJ (1989) Hypersaline environments. Microbiology and biogeochemistry. Springer, BerlinCrossRefGoogle Scholar
  32. Krumgalz BS, Millero FJ (1982) Physico-chemical study of the Dead Sea waters. I. Activity coefficients of major ions in Dead Sea water. Mar Chem 11:209–222CrossRefGoogle Scholar
  33. Leberman R, Soper AK (1995) Effect of high salt concentrations on water structure. Nature 378:364–366PubMedCrossRefGoogle Scholar
  34. Leuko S, Legat A, Fendrihan S, Stan-Lotter H (2004) Evaluation of the LIVE/DEAD BacLight kit for detection of extremophilic Archaea and visualization of microorganisms in environmental hypersaline samples. Appl Environ Microbiol 70:6884–6886PubMedCrossRefGoogle Scholar
  35. Matsubaya O, Sakai H, Torii T, Burton H, Kerry K (1979) Antarctic saline lakes – stable isotopic ratios, chemical compositions and evolution. Geochim Cosmochim Acta 43:7–25CrossRefGoogle Scholar
  36. McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC (2011) Seasonal flows on warm martial slopes. Science 333:740–743PubMedCrossRefGoogle Scholar
  37. McGenity TJ, Oren A (2012) Life in saline environments. In: Bell EM (ed) Life at extremes. Environments, organisms and strategies for survival. CABI International, Wallingford, pp 402–437CrossRefGoogle Scholar
  38. Meyer GH, Morrow MB, Wyss O, Berg TE, Littlepage JL (1962) Antarctica: the microbiology of an unfrozen saline pond. Science 138:1103–1104PubMedCrossRefGoogle Scholar
  39. Mullakhanbhai M, Larsen H (1975) Halobacterium volcanii, spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104:207–214PubMedCrossRefGoogle Scholar
  40. Oren A (1983) Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int J Syst Bacteriol 33:381–386CrossRefGoogle Scholar
  41. Oren A (1986a) Relationships of extremely halophilic bacteria towards divalent cations. In: Megusar F, Gantar M (eds) Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana, pp 52–58Google Scholar
  42. Oren A (1986b) Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can J Microbiol 32:4–9CrossRefGoogle Scholar
  43. Oren A (1992) Bacterial activities in the Dead Sea, 1980–1991: survival at the upper limit of salinity. Int J Salt Lake Res 1:7–20CrossRefGoogle Scholar
  44. Oren A (1993) Ecology of extremely halophilic microorganisms. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 25–53Google Scholar
  45. Oren A (2002) Halophilic microorganisms and their environments. Kluwer Scientific, DordrechtCrossRefGoogle Scholar
  46. Oren A (2011) The halophilic world of Lourens Baas Becking. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments: current research and future trends. Springer, Berlin, pp 9–25CrossRefGoogle Scholar
  47. Oren A (2013) Two centuries of microbiological research in the Wadi Natrun, Egypt: a model system for the study of the ecology, physiology, and taxonomy of haloalkaliphilic microorganisms. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles – organisms living under multiple stress. Springer, Dordrecht, 27:101–119Google Scholar
  48. Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754PubMedCrossRefGoogle Scholar
  49. Papp-Wallace KM, Maguire ME (2008) Regulation of CorA Mg2+ channel function affects the virulence of Salmonella enterica serovar typhimurium. J Bacteriol 190:6509–6516PubMedCrossRefGoogle Scholar
  50. Parsegian VA (1995) Hopes for Hofmeister. Nature 378:335–336CrossRefGoogle Scholar
  51. Pitzer KS (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J Phys Chem 77:268–277CrossRefGoogle Scholar
  52. Pitzer KS, Kim JJ (1974) Thermodynamics of electrolytes. IV. Activity and osmotic coefficients of mixed electrolytes. J Am Chem Soc 96:5701–5707CrossRefGoogle Scholar
  53. Samarkin VA, Madigan MT, Bowles MW, Casciotti KL, Priscu JC, McKay CP, Joye SB (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geosci 3:341–344CrossRefGoogle Scholar
  54. Sass AM, McKew BA, Sass H, Fichtel J, Timmis KN, McGenity TJ (2008) Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments. Saline Syst 4:8PubMedCrossRefGoogle Scholar
  55. Siegel BZ, McMurty G, Siegel SM, Chen J, LaRock P (1979) Life in the calcium chloride environment of Don Juan Pond, Antarctica. Nature 280:828–829CrossRefGoogle Scholar
  56. Siegel BZ, Siegel SM, Chen J, LaRock P (1983) An extraterrestrial habitat on earth: the algal mat of Don Juan Pond. Adv Space Res 3:39–42PubMedCrossRefGoogle Scholar
  57. Sonjak S, Gürsu BY, Gunde-Cimerman N (2010) MgCl2 tolerant fungi from the bitterns. Abstract, Extremophiles 2010, Ponta Delgada, AzoresGoogle Scholar
  58. Taras M (1948) Photometric determination of magnesium in water with brilliant yellow. Anal Chem 20:1156–1158CrossRefGoogle Scholar
  59. Trüper HG, Galinski EA (1986) Concentrated brines as habitats for microorganisms. Experientia 42:1182–1187CrossRefGoogle Scholar
  60. van der Wielen PWJJ (2006) Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes in the MgCl2-dominated deep hypersaline anoxic basin Discovery. FEMS Microbiol Lett 259:326–331PubMedCrossRefGoogle Scholar
  61. van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, Party BDS (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123PubMedCrossRefGoogle Scholar
  62. Wallmann K, Suess E, Westbrook GH, Winckler G, Cita MB (1997) Salty brines on the Mediterranean Sea floor. Nature 387:31–32CrossRefGoogle Scholar
  63. Wallmann K, Aghib FS, Castadori D, Cita MB, Suess E, Greinert J, Rickert D (2002) Sedimentation and formation of secondary minerals in the hypersaline Discovery Basin, Eastern Mediterranean Sea. Mar Geol 186:9–28CrossRefGoogle Scholar
  64. Williams JP, Hallsworth JE (2009) Limits of life in hostile environments: no barriers to biosphere function? Environ Microbiol 11:3292–3308PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Plant and Environmental Sciences, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations