Halophilic, Acidophilic, and Haloacidophilic Prokaryotes

  • Hiroaki MinegishiEmail author
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 27)


During Earth’s evolution, accompanied by geophysical and climatic changes, a number of ecosystems have been formed which differ by the broad variety of physicochemical and biological factors composing our environment (Pikuta et al., 2007). Traditionally, extreme conditions can refer to physical extremes such as temperature, pressure, and radiation, but also to geochemical extremes such as desiccation, salinity, pH, and toxins (van den Burg, 2003). Many microorganisms survive under physically and geochemically extreme conditions, and these are termed as extremophiles, including thermophilic, psychrophilic, piezophilic, radioresistant, xerophilic, halophilic, acidophilic, alkaliphilic, metallotolerant, toxitolerant, and oligotrophic. This chapter deals with polyextremophile organisms that are both halophilic and acidophilic.


Rock Salt Trisodium Citrate Hypersaline Environment Salt Sample Trace Metal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alpers CN, Rye RO, Nordstrom DK, White LD, King L (1992) Chemical, crystallographic and stable isotope properties of alunite and jarosite from acid hypersaline Australian lakes. Chem Geol 96:203–206CrossRefGoogle Scholar
  2. Benison KC, Bowen BB (2006) Acid saline lake systems give clues about past environments and the search for life on Mars. Icarus 183:225–229CrossRefGoogle Scholar
  3. Bertoldo C, Dock C, Antranikian G (2004) Thermoacidophilic microorganisms and their novel biocatalysts. Eng Life Sci 4:521–531CrossRefGoogle Scholar
  4. Boone DR, Whitman WB, Koga Y (2001) Order III. Methanosarcinales ord. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) The archaea and the deeply branching and phototrophic bacteria. Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 268–289Google Scholar
  5. Clark BC, Morris RV, McLennan SM, Gellert R, Jolliff B, Knoll AH, Squyres SW, Lowenstein TK, Ming DW, Tosca NJ, Yen A, Christensen PR, Gorevan S, Brückner J, Calvin W, Dreibus G, Farrand W, Klingelhoefer G, Waenke H, Zipfel J, Bell JF III, Grotzinger J, McSween HY, Rieder R (2005) Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet Sci Lett 240:73–94CrossRefGoogle Scholar
  6. Cline SW, Schalkwyk LC, Doolittle WF (1989) Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol 171:4987–4991PubMedGoogle Scholar
  7. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  8. González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865PubMedCrossRefGoogle Scholar
  9. Johnson DB (2007) Physiology and ecology of acidophilic microorganisms. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 257–270Google Scholar
  10. Johnson DB (2012) Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol Ecol 81:2–12PubMedCrossRefGoogle Scholar
  11. Kuhsner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol 1. CRC Press, Boca Raton, pp 109–138Google Scholar
  12. Long DT, Fegan NE, McKee JD, Lyons WB, Hines ME, Macumber PG (1992) Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia. Chem Geol 96:183–202CrossRefGoogle Scholar
  13. Macumber PG (1992) Hydrological processes in the Tyrrell Basin, southeastern Australia. Chem Geol 96:1–18CrossRefGoogle Scholar
  14. Mann AW (1983) Hydrochemistry and weathering on the Yilgarn Block, Western Australia-ferrolysis and heavy metals in continental brines. Geochim Cosmochim Acta 47:181–190CrossRefGoogle Scholar
  15. McArthur JM, Turner J, Lyons WB, Osborn AO, Thirlwall MF (1991) Hydrochemistry on the Yilgarn Block, Western Australia: ferrolysis and mineralization in acidic brines. Geochim Cosmochim Acta 55:1273–1288CrossRefGoogle Scholar
  16. Minegishi H, Mizuki T, Echigo A, Fukushima T, Kamekura M, Usami R (2008) Acidophilic haloarchaeal strains are isolated from various solar salts. Saline Syst 4:16PubMedCrossRefGoogle Scholar
  17. Minegishi H, Echigo A, Nagaoka S, Mizuki T, Kamekura M, Usami R (2010) Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 60:2398–2408PubMedCrossRefGoogle Scholar
  18. Mormile MR, Hong BY, Benison KC (2009) Molecular analysis of the microbial communities of Mars analog lakes in Western Australia. Astrobiology 9:919–930PubMedCrossRefGoogle Scholar
  19. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedGoogle Scholar
  20. Oren A (2002a) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63PubMedGoogle Scholar
  21. Oren A (2002b) Halophilic microorganisms and their environments. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  22. Oren A (2010) Acidophiles. In: Encyclopedia of life sciences. Wiley, ChichesterGoogle Scholar
  23. Osterloo MM, Hamilton VE, Bandfield JL, Glotch TD, Baldridge AM, Christensen PR, Tornabene LL, Anderson FS (2008) Chloride-bearing materials in the southern highlands of Mars. Science 319:1651–1654PubMedCrossRefGoogle Scholar
  24. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:189–203CrossRefGoogle Scholar
  25. Risacher F, Alonso H, Salazar C (2002) Hydrochemistry of two adjacent acid saline lakes in the Andes of northern Chile. Chem Geol 187:39–57CrossRefGoogle Scholar
  26. Schleper C, Pühler G, Klenk HP, Zillig W (1996) Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. Int J Syst Bacteriol 46:814–816CrossRefGoogle Scholar
  27. Seckbach J (2000) Acidophilic microorganisms. In: Seckbach J (ed) Journey to diverse microbial worlds: adaptation to exotic environments. Kluwer Academic, Dordrecht, pp 107–116CrossRefGoogle Scholar
  28. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  29. Sugisaki R, Horiuchi Y, Sugitani K, Adachi M (1995) Acid character of Archean ocean waters revealed by 3.3 Ga-old ferruginous chert compositions, Western Australia. Proc Jpn Acad 71:170–174CrossRefGoogle Scholar
  30. van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218PubMedCrossRefGoogle Scholar
  31. Wang QF, Li W, Yang H, Liu YL, Cao HH, Dornmayr-Pfaffenhuemer M, Stan-Lotter H, Guo GQ (2007) Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample. Int J Syst Evol Microbiol 57:600–604PubMedCrossRefGoogle Scholar
  32. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  33. Yamauchi Y, Minegishi H, Echigo A, Shimane Y, Shimoshige H, Kamekura M, Itoh T, Doukyu N, Inoue A, Usami R (2013) Halarchaeum salinum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int J Syst Evol Microbiol 63:1138–1142Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Bio-Nano Electronics Research CenterToyo UniversityKawagoeJapan

Personalised recommendations