Skip to main content

Tardigrades: An Example of Multicellular Extremophiles

  • Chapter
  • First Online:
Polyextremophiles

Abstract

Life has expanded its living range into almost every environmental niche imaginable on Earth. These include habitats of extreme temperature, pressure, and pH ranges, and environments with low nutrient and oxygen availability, high salinity, and radiation exposure. However, not only microbes can survive in these harsh environments but also some higher complexity organisms such as fungi, plants, and even animals. Among the toughest animals in this respect are tardigrades. These microscopic animals, also called “water bears,” are metameric invertebrates that live in a wide range of habitats such as in marine, freshwater, and terrestrial ecosystems. They possess various adaptation mechanisms such as cryptobiosis, which makes them astonishingly resistant to desiccation, extreme pressures, temperature, and radiation conditions. Thus, these multicellular organisms should be considered when assessing survival rates and evaluating analogue organisms for space travel and in extraterrestrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151:5–17

    Article  Google Scholar 

  • Baumann H (1922) Die Anabiose der Tardigraden. Zool Jahrb 45:501–556

    Google Scholar 

  • Bertolani R, Guidetti R, Jönsson IK, Altiero T, Boschini DA, Rebecchi L (2004) Experiences with dormancy in tardigrades. J Limnol 63(suppl 1):16–25

    Google Scholar 

  • Chela-Flores J (2011) The science of astrobiology. Springer, Dordrecht (see page 115)

    Book  Google Scholar 

  • Clark B (2001) Planetary interchange of bioactive material: probability factors and implications. Orig Life Evol Biosph 31:185–197

    Article  PubMed  CAS  Google Scholar 

  • Clegg JS (1962) Free glycerol in dormant cysts of the brine shrimp, Artemia salina, and its disappearance during development. Biol Bull 122:295–301

    Article  Google Scholar 

  • Clegg JS (2001) Cryptobiosis – a peculiar state of biological organization. Comp Biochem Physiol 128(Part B):613–624

    CAS  Google Scholar 

  • Danks HV (2000) Dehydration in dormant insects. J Insect Physiol 46:837–852

    Article  PubMed  CAS  Google Scholar 

  • Davies PCW (1996) The transfer of viable microorganisms between planets. In: Ciba Foundation Symposium 202 – evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, Chichester

    Google Scholar 

  • Drinkwater LE, Crowe JH (1991) Hydration state, metabolism, and hatching of Mono Lake Artemia cysts. Biol Bull 180:432–439

    Article  CAS  Google Scholar 

  • Eleutherio ECA, Araujo P, Panek A (1993) Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30:591–596

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Hartl FU (1999) Principles of protein folding in the cellular environment. Curr Opin Struct Biol 9:102–110

    Article  PubMed  CAS  Google Scholar 

  • Franceschi T (1948) Anabiosi nei tardigdi. Boll Mus Ist Biol Univ Genova 22:47–49

    Google Scholar 

  • Gridetti R, Bertolani R (2011) Phylum Tardigrades Dayère 1840. In: ZQ Zhang (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootax 3148: 96–97

    Google Scholar 

  • Horikawa DD (2012) Survival of tardigrades in extreme environments: a model animal for astrobiology. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Anoxia: evidence for Eukaryote survival and paleontological strategies, vol 21, Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 205–217

    Google Scholar 

  • Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade Milnesium tardigradum. Int J Radiat Biol 82:843–848

    Article  PubMed  CAS  Google Scholar 

  • Horikawa DD, Kunieda T, Abe W, Watanabe M, Nakahara Y, Yukuhiro F, Sakashita T, Hamada N, Wada S, Funayama T, Katagiri C, Kobayashi Y, Higashi S, Okuda T (2008) Establishment of a rearing system of the extremotolerant tardigrade Ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology 8:549–556

    Article  PubMed  CAS  Google Scholar 

  • Horneck G, Bücker H, Reitz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:41–45

    Article  PubMed  CAS  Google Scholar 

  • Houtkooper JM, Schulze-Makuch D (2007) A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int J Astrobiol 6:147–152

    Article  CAS  Google Scholar 

  • Islam MR, Schulze-Makuch D (2007) Adaptation mechanisms of multicellular extremophiles. Int J Astrobiol 6:199–215

    Article  CAS  Google Scholar 

  • Jönsson KI (2003) Causes and consequences of excess resistance in cryptobiotic metazoans. Physiol Biochem Zool 76:429–435

    Article  PubMed  Google Scholar 

  • Jönsson KI, Bertolani R (2001) Facts and fiction about long-term survival in Tardigrades. J Zool 255:121–123

    Article  Google Scholar 

  • Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731

    Article  PubMed  Google Scholar 

  • MacRae TH (2000) Structure and function of small heat shock/-crystallin proteins: established concepts and emerging ideas. Cell Mol Life Sci 57:899–913

    Article  PubMed  CAS  Google Scholar 

  • Madin KA, Crowe JH (1975) Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J Exp Zool 193:335–342

    Article  CAS  Google Scholar 

  • Mancinelli RL, White MR, Rothschild LJ (1998) Biopan survival I: exposure of the osmophiles Synechococcus sp. (Nägeli) and Haloarcula sp. to the space environment. Adv Space Res 22:327–334

    Article  CAS  Google Scholar 

  • Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh HJ, Rickman H, Valtonen M, Zheng JQ (2000) Natural transfer of viable microbes in space. Part 1: from Mars to Earth and Earth to Mars. Icarus 145:391–427

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Fajardo-Cavazos P, Langenhorst F, Melosh HJ (2006) Bacterial spores survive hypervelocity launch by spallation: implications for lithopanspermia. In: Lunar planet science conference XXXVII, League City, 2006, #1808

    Google Scholar 

  • Pannewitz S, Schlensog M, Green TGA (2003) Are lichens active under snow in continental Antarctica? Ecophysiology 135:30–38

    Google Scholar 

  • Rebecchi L, Altiero T, Guidetti R, Cesari M, Bertolani R, Negroni M, Rizzo AM (2009) Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE mission on FOTON-M3 (September 2007). Astrobiology 9:581–591

    Article  PubMed  CAS  Google Scholar 

  • Ricci C (1998) Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia 387/388:321–326

    Article  Google Scholar 

  • Romano FA III (2003) On water bears. Florida Entomologist 86:134–137

    Article  Google Scholar 

  • Schmidt-Rhaesa A (2001) Tardigrades – are they really miniaturized dwarfs? Zoologischer Anzeiger 240:549–555

    Article  Google Scholar 

  • Schokraie E, Hotz-Wagenblatt A, Warnken U, Mali B, Frohme M, Förster F, Dandekar T, Hengherr S, Schill R-O, Schnölzer M (2010) Proteomic analysis of tardigrades: towards a better understanding of molecular mechanisms by anhydrobiotic organisms. PLoS One 5:e9502

    Article  PubMed  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2008) Life in the universe: expectations and constraints, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Schulze-Makuch D, Fairén AG, Davila AF (2008) The case for life on Mars. Int J Astrobiol 7:117–141

    Article  CAS  Google Scholar 

  • Seckbach J (2013) Life on the edge: who is who in polyextremophiles: life under multiple forms of stress. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles: life under multiple forms of stress. Springer, Dordrecht

    Chapter  Google Scholar 

  • Somero GN, Yancey PH (1997) Osmolytes and cell volume regulation: physiological and evolutionary principles. In: Hoffman JF, Jamieson JD (eds) Handbook of physiology. Oxford University Press, New York, pp 441–484

    Google Scholar 

  • Steiner G, Albin FE (1946) Resuscitation of the nematode Tylenchus polyhypnus sp., after almost 39 years’ dormancy. J Wash Acad Sci 36:97–99

    PubMed  CAS  Google Scholar 

  • Takamatsu N, Kojima M, Taniyama M, Ohba K, Uematsu T, Segawa C, Tsutou S, Watanabe M, Kondo J, Kondo N, Shiba T (1997) Expression of multiple 1-antitrypsin-like genes in hibernating species of the squirrel family. Gene 204:127–132

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M (2006) Anhydrobiosis in invertebrates. Appl Entomol Zool 41:15–31

    Article  CAS  Google Scholar 

  • Watanabe M, Kikawada T, Okuda T (2003) Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of Polypedilum vanderplanki. J Exp Biol 206:2281–2286

    Article  PubMed  CAS  Google Scholar 

  • Westh P, Ramlov H (1991) Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool 258:303–311

    Article  CAS  Google Scholar 

  • Wharton DA (2002) Life at the limits – organisms in extreme environments. Cambridge University Press, New York, 300 pp

    Book  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  PubMed  CAS  Google Scholar 

  • Wright JC, Westh P, Ramløv H (1992) Cryptobiosis in Tardigrada. Biol Rev 67:1–29

    Article  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero G (1982) Living with water stress: evolution of osmolytes systems. Science 217:1214–1222

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schulze-Makuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schulze-Makuch, D., Seckbach, J. (2013). Tardigrades: An Example of Multicellular Extremophiles. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_28

Download citation

Publish with us

Policies and ethics