Polyextremophilic Photoautotrophic Eukaryotic Algae

  • Werner ReisserEmail author
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 27)


Organisms that need any kind of extreme conditions to complete their life cycle are called extremophilic. That can be, e.g., elevated (thermophily) or lowered (psychrophily) temperature, an acidic pH (acidophily) or increased salinity (halophily). When two or more types of extreme conditions are required, organisms are designated as polyextremophilic. This chapter deals with polyextremophilic photoautotrophic eukaryotic algae. It discusses the meaning of the term extremophilic and gives examples for polyextremophily among ice and snow algae, among algae of hot or cold desert soils, and among algae living in habitats of high salinity or in hot and acid aqueous environments. A short survey is given on how research on extremophilic eukaryotic algae contributes to solving actual questions in the fields of biotechnology, evolution of life, and astrobiology.


Eukaryotic Alga Algal Taxon Reverse Gyrase Campi Flegrei Caldera Antarctic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguilera A, Zettler E, Gomez F, Amaral-Zettler L, Rodriguez N, Amils R (2007) Distribution and seasonal variability in the benthic eukaryotic community of Rio Tinto (SW Spain), an acidic, high metal extreme environment. Syst Appl Microbiol 30:531–546PubMedCrossRefGoogle Scholar
  2. Barbier RB, Zimmermann M, Weber APM (2005) Genomics of the thermo-acidophilic red alga Galdieria sulphuraria. Proc SPIE 5906:590609CrossRefGoogle Scholar
  3. Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G (2011) Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63:210–219PubMedCrossRefGoogle Scholar
  4. Bondarenko NA, Timoshkin OA, Röpstorf P, Meinick NG (2006) The under-ice and bottom periods in the life cycle of Aulacoseira baicalensis (K. Meyer) Simonsen, a principle Lake Baikal alga. Hydrobiologia 568:107–109CrossRefGoogle Scholar
  5. Broady PA (1976) The terrestrial algae of Signy Island, South Orkney Islands. Br Antarctic Surv Rep 98:1–123Google Scholar
  6. Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98:253–279PubMedCrossRefGoogle Scholar
  7. Chen Z, He C, Hu H (2012) Temperature response of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus. Extremophiles 16:127–133PubMedCrossRefGoogle Scholar
  8. Ciniglia C, Yoon HS, Pollio A, Pinto G, Bhattacharya D (2004) Hidden biodiversity of the extremophilic cyanidiales red algae. Mol Ecol 13:1827–1838PubMedCrossRefGoogle Scholar
  9. Clavero E, Garcia-Pichel F, Grimalt JO, Hernandez-Mariné M (2001) Behavior of diatoms apparently adapted to salinity. The case of Climaconeis scopuloroides and Amphora sp. Beihefte zur Nova Hedwigia 123:69Google Scholar
  10. Costas E, Flores-Moya A, Perdigones N, Mianeiro E, Blanco JL, Garcia ME, Lopez-Rodas V (2007) How eukaryotic algae can adapt to Spains’s Rio Tinto: a neo-Darwinian proposal for rapid adaption to an extremely hostile environment. New Phytol 175:334–339PubMedCrossRefGoogle Scholar
  11. D’Amico S, Collins T, Marx J-C, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedCrossRefGoogle Scholar
  12. Darienko T, Hoffmann L (2010) Subaerial algae and cyanobacteria from the archaeological remains of Carthage (Tunisia) including the record of a species of Cyanidium (Rhodophyta). Algol Stud 135:41–60Google Scholar
  13. Davey MC, Clarke KJ (1991) The spatial distribution of microalgae on Antarctic fellfield soils. Antarctic Sci 3:257–263CrossRefGoogle Scholar
  14. de Wever A, Leliaert F, Verleyen E, Vanormelingen P, van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc R Soc Lond B 276:3591–3599CrossRefGoogle Scholar
  15. Elster J, Lukesova A, Svoboda J, Kopecky J, Kanda H (1999) Diversity and abundance of soil algae in the polar desert, Svedrup Pass, central Ellesmere Island. Polar Rec 35:231–254CrossRefGoogle Scholar
  16. Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Nat 58:295–311Google Scholar
  17. Frenette J-J, Thibeault P, Lapierre J-F, Hamilton PB (2008) Presence of algae in freshwater ice cover of fluvial Lac Saint – Pierre (St. Lawrence river, Canada). J Phycol 44:284–291CrossRefGoogle Scholar
  18. Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Orig Life 10:223–235PubMedCrossRefGoogle Scholar
  19. Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108CrossRefGoogle Scholar
  20. Gerloff-Elias A, Barua D, Mölich A, Spijkerman E (2006) Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophila. FEMS Microbiol Ecol 56:345–354PubMedCrossRefGoogle Scholar
  21. Henley WJ, Hironaka J, Major K, Fleck DM, Buchheim M (2001) Characterization of two halotolerant chlorophyte isolates from a temperate salt flat. Beihefte zur Nova Hedwigia 123:64Google Scholar
  22. Hoham RW, Berman JD, Rogers HS, Felio JH, Ryba JB, Miller PR (2006) Two new species of green snow algae from upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia 45:319–330CrossRefGoogle Scholar
  23. Janech MG, Krell A, Mock T, Kang J-S, Raymond JA (2008) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416CrossRefGoogle Scholar
  24. Kirkwood AE, Henley WJ (2006) Algal community dynamics and halotolerance in a terrestrial, hypersaline environment. J Phycol 42:537–547CrossRefGoogle Scholar
  25. Komárek J, Nedbalová L (2007) Green cryosestic algae. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 323–342Google Scholar
  26. Krell A, Beszteri B, Dieckmann G, Glöckner G, Valentin K, Mock T (2008) A new class of ice-binding proteins discovered in a salt-stress-induced cDNA library of the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). Eur J Phycol 43:423–433CrossRefGoogle Scholar
  27. Lewis LA, Flechtner VR (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa. Taxon 51:443–451CrossRefGoogle Scholar
  28. Lewis LA, Flechtner VR (2004) Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of western North America. J Phycol 40:1127–1137CrossRefGoogle Scholar
  29. Lewis LA, Lewis PO (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst Biol 54:936–947PubMedCrossRefGoogle Scholar
  30. Leya T, Rahn A, Lütz C, Remias D (2009) Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol 67:432–443PubMedCrossRefGoogle Scholar
  31. Ling HU (2001) Snow algae of the Windmill Islands, continental Antarctica: Desmotetra aureospora sp. nov. and D. antarctica comb. nov. (Chlorophyta). J Phycol 37:160–174CrossRefGoogle Scholar
  32. Ling HU (2002) Snow algae of the Windmill Islands, continental Antarctica: Chlorosarcina antarctica comb. nov. (Chlorophyceae, Chlorophyta) from pink snow, with discussion of Chlorosarcina and allied genera. Phycologia 41:1–9CrossRefGoogle Scholar
  33. Liu C, Huang X, Wang X, Zhang X, Li G (2006) Phylogenetic studies on two strains of Antarctic ice algae based on morphological and molecular characteristics. Phycologia 45:190–198CrossRefGoogle Scholar
  34. Lud D, Buma AGJ, van de Poll W, Moerdijk TCW, Huiskes AHL (2001) DNA damage and photosynthetic performance in the Antarctic terrestrial alga Prasiola crispa ssp. antarctica (Chlorophyta) under manipulated UV-B radiation. J Phycol 37:459–467CrossRefGoogle Scholar
  35. Margesin R (2012) Psychrophilic microorganisms in alpine soils. In: Lütz C (ed) Plants in Alpine regions. Springer, Vienna, pp 187–198CrossRefGoogle Scholar
  36. Mataloni G, Tell G, Wynn-Williams DD (2000) Structure and diversity of soil algal communities from Cierva Point (Antarctic peninsula). Polar Biol 23:205–211CrossRefGoogle Scholar
  37. McElroy RD (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75CrossRefGoogle Scholar
  38. Mock T, Junge K (2007) Psychrophilic diatoms: mechanisms for survival in freeze-thaw-cycles. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 345–364Google Scholar
  39. Novis PM, Harding JS (2007) Extreme acidophiles. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 445–463Google Scholar
  40. Oesterhelt C, Schmälzlin E, Schmitt JM, Lokstein H (2007) Regulation of photosynthesis in the unicellular red alga Galdieria sulphuraria. Plant J 51:500–511PubMedCrossRefGoogle Scholar
  41. Oren A (2007) Diversity of organic osmotic compounds and osmotic adaption in cyanobacteria and algae. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 641–655Google Scholar
  42. Painter TH, Duval B, Thomas WH, Mendez M, Heintzelman S, Dozier J (2001) Detection and quantification of snow algae with an airborne imaging spectrometer. Appl Environ Microbiol 67:5267–5272PubMedCrossRefGoogle Scholar
  43. Pick U, Katz A, Weiss M, Levine E, Paz K, Ventrella R (2006) Survival at extreme salinity and iron deficiency. Accessed 11 Apr 2013
  44. Plettner I, Nothnagel J, Schriek R, Wanzek M, Kirst GO (2001) The physiological ability of the three Antarctic ice-diatoms Chaetoceros sp., Entomoneis kufferathii Manguin and Nitzschia lecointei van Heurck to acclimatize to varying abiotic factors is related to their natural distribution in the sea-ice column. Beihefte zur Nova Hedwigia 123:66Google Scholar
  45. Pocock T, Vetterli A, Falk S (2011) Evidence for phenotypic plasticity in the Antarctic extremophile Chlamydomonas raudensis Ettl UWO 241. J Exp Bot 62:1169–1177PubMedCrossRefGoogle Scholar
  46. Possmayer M, Berardi G, Beall BFN, Trick CG, Hüner PA, Maxwell DP (2011) Plasticity of the psychrophilic green alga Chlamydomonas raudensis (UWO 241) (Chlorophyta) to supraoptimal temperature stress. J Phycol 47:1098–1109CrossRefGoogle Scholar
  47. Quin J, Lehr CR, Yan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci USA 106:5213–5217CrossRefGoogle Scholar
  48. Reeb V, McDermott TH, Bhattacharya D (2011) Good to the bone: microbial community thrives within bone cavities of a bison carcass at Yellowstone National Park. Environ Microbiol 13:2403–2415PubMedCrossRefGoogle Scholar
  49. Remias D (2012) Cell structure and physiology of alpine snow and ice algae. In: Lütz C (ed) Plants in Alpine regions. Springer, Vienna, pp 175–185CrossRefGoogle Scholar
  50. Remias D, Schwaiger S, Aigner S, Leya T, Stuppner H, Lütz C (2011) Characterization of UV- and VIS-absorbing, purogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol Ecol 79:638–648PubMedCrossRefGoogle Scholar
  51. Rivasseau C, Farhi E, Gromova M, Ollivier J, Bligny J (2010) Resistance to irradiation of microalgae growing in the storage pools of a nuclear reactor investigated by NMR and neutron spectroscopies. Spectroscopy 24:381–385CrossRefGoogle Scholar
  52. Roberts D (1998) Eukaryotes in extreme environments.
  53. Samsonoff WA, MacColl R (2001) Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Arch Microbiol 176:400–405PubMedCrossRefGoogle Scholar
  54. Seckbach J (1994) The first eukaryotic cells – acid hot spring algae. J Biol Phys 20:335–345CrossRefGoogle Scholar
  55. Seckbach J, Oren A (2007) Oxygenic photosynthetic microorganisms in extreme environments: possibilities and limitation. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 5–25CrossRefGoogle Scholar
  56. Sinha RP, Klisch M, Gröninger A, Häder D-P (2001) Responses of aquatic algae and cyanobacteria to solar UV-B. Biomed Life Sci 154:219–236Google Scholar
  57. Spikermann E, Barua D, Gerloff-Elias A, Kern J, Gaedke U, Heckathorn SA (2007) Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium. Extremophiles 11:551–562CrossRefGoogle Scholar
  58. Stambler N, Dubinsky Z (2007) Marine phototrophs in the twilight zone. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 79–97CrossRefGoogle Scholar
  59. Tartari A, Forlani G (2008) Osmotic adjustments in a psychrophilic alga, Xanthomonas sp. (Xanthophyceae). Environ Exp Bot 63:342–350CrossRefGoogle Scholar
  60. Thomas WH, Duval B (1995) Sierra Nevada, California, U.S.A., Snow algae: snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arctic Alpine Res 27:389–399CrossRefGoogle Scholar
  61. Vincent WF, Mueller DR, Bonilla S (2004) Ecosystems on ice: the microbial ecology of Markham ice shelf in the high Arctic. Cryobiology 48:103–112PubMedCrossRefGoogle Scholar
  62. Weber APM, Horst RJ, Barbier GG, Oesterhelt C (2007) Metabolism and metabolomics of eukaryotes living under extreme conditions. Int Rev Cytol 256:1–34PubMedCrossRefGoogle Scholar
  63. Willem S, Srahna M, Devos N, Gerday C, Loppes R, Matagne RF (1999) Protein adaption to low temperatures: a comparative study of alpha-tubulin sequences in mesophilic and psychrophilic algae. Extremophiles 3:221–226PubMedCrossRefGoogle Scholar
  64. Zettler LAA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Microbiology: eukaryotic diversity in Spain`s River of Fire. Nature 417:137PubMedCrossRefGoogle Scholar
  65. Zhang Q, Gradinger R, Spindler M (1999) Experimental study on the effect of salinity on growth rates of Arctic-sea-ice algae from the Greenland Sea. Boreal Environ Res 4:1–8Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Biology, General and Applied BotanyUniversity of LeipzigLeipzigGermany

Personalised recommendations