Microbial Eukaryotes in Hypersaline Anoxic Deep-Sea Basins

  • Virginia P. EdgcombEmail author
  • William D. Orsi
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 27)


The combination of high hydrostatic pressure, absence of light, anoxia, nearly saturated salt concentration and corresponding high density, and a sharp chemocline makes the deep hypersaline anoxic basins in the Eastern Mediterranean Sea some of the most polyextreme habitats on Earth. Once considered anathema to life, deep hypersaline anoxic basins (DHABs) are now known to host diverse microbial life, including eukaryotes. The haloclines and brines of DHABs with different chemistries appear to host distinct populations of microbiota. The most abundant groups of eukaryotes detected by small subunit ribosomal RNA-based molecular analyses and microscopy to date are members of the alveolates, kinetoplastids, and fungi. While the specific adaptations that allow these taxa to survive under such polyextreme condition are still unknown, many ciliates in halocline water samples have been observed to host bacterial and/or archaeal epibiotic partners. Symbiosis may represent one strategy enabling eukaryotic survival in DHAB environments.


Niskin Bottle Brine Sample Microbial Eukaryote Protist Community Santa Barbara Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is part of a collaboration with the Stoeck laboratory at University of Kaiserslautern, Germany; the Kormas laboratory at University of Thessaly, Greece; and the Yakimov laboratory at Istituto per l’Ambiente Marino Costiero, CNR, Messina, Italy. We would like to thank the captains and crews of the R/V Oceanus, R/V Atlantis, and R/V Urania for their hard work to assure the success of our sampling objectives. VE would like to acknowledge funding by NSF OCE-0849578.


  1. Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381PubMedCrossRefGoogle Scholar
  2. Barry JP, Greene HG, Orange DL, Baxter CH, Robinson BH, Kochevar RE, Nybakken JW, Reed DL, McHugh CM (1996) Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep-Sea Res 43:1739–1762CrossRefGoogle Scholar
  3. Bernhard JM, Sen Gupta BK (1999) Foraminifera of oxygen-depleted environments. In: Sen Gupta BK (ed) Modern Foraminifera. Kluwer Academic, Dordrecht, pp 201–216Google Scholar
  4. Bernhard JM, Buck KR, Farmer MA, Bowser SS (2000) The Santa Barbara Basin is a symbiosis oasis. Nature 403:77–80PubMedCrossRefGoogle Scholar
  5. Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, Rizzi A, Yakimov M, Marty D, De Lange GJ, van der Wielen P, Bolhuis H, McGenity TJ, Polymenakou PN, Malinverno E, Giuliano L, Corselli C, Daffonchio D (2009) Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA 106:9151–9156PubMedCrossRefGoogle Scholar
  6. Cavanaugh CM (1994) Microbial symbiosis: patterns of diversity in the marine environment. Am Zool 34:79–89Google Scholar
  7. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–341PubMedCrossRefGoogle Scholar
  8. Cita MB (2006) Exhumation of Messinian evaporites in the deep-sea and creation of deep anoxic brine filled collapsed basins. Sed Geol 188–189:357–378CrossRefGoogle Scholar
  9. Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PW, Bolhuis H, Yakimov MM, D’Auria G, Giuliano L, Marty D, Tamburini C, McGenity TJ, Hallsworth JE, Sass AM, Timmis KN, Tselepides A, de Lange GJ, Hubner A, Thomson J, Varnavas SP, Gasparoni F, Gerber HW, Malinverno E, Corselli C, Garcin J, McKew B, Golyshin PN, Lampadariou N, Polymenakou P, Calore D, Cenedese S, Zanon F, Hoog S (2006) Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 440:203–207PubMedCrossRefGoogle Scholar
  10. Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30. doi: 10.1186/1741-7007-8-30 PubMedCrossRefGoogle Scholar
  11. Distel DL, Felbeck H (1988) Pathways of inorganic carbon fixation in the endosymbiont-bearing lucinid clam Lucinoma aequizonata. I. Purification and characterization of endosymbiotic bacteria. J Exp Zool 247:1–10CrossRefGoogle Scholar
  12. Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of kebrit deep, red Sea. Arch Microbiol 172:213–218PubMedCrossRefGoogle Scholar
  13. Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085PubMedCrossRefGoogle Scholar
  14. Eder W, Schmidt M, Koch M, Garbe-Schonberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763PubMedCrossRefGoogle Scholar
  15. Edgcomb V, Orsi W, Leslin C, Epstein SS, Bunge J, Jeon S, Yakimov MM, Behnke A, Stoeck T (2009) Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea. Extremophiles 13:151–167PubMedCrossRefGoogle Scholar
  16. Edgcomb V, Breglia SA, Yubuki N, Beaudoin D, Patterson DJ, Leander BS, Bernhard JM (2010) Identity of epibiotic bacteria on symbiontid euglenozoans in O2-depleted marine sediments: evidence for symbiont and host co-evolution. ISME J 5:11–13Google Scholar
  17. Edgcomb V, Orsi W, Bunge J, Jeon SO, Christen R, Leslin C, Holder M, Taylor GT, Suarez P, Varela R, Epstein S (2011a) Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs. Sanger insights into species richness. ISME J 5:1344–1356PubMedCrossRefGoogle Scholar
  18. Edgcomb VP, Orsi W, Breiner H-W, Stock A, Filker S, Yakimov MM, Stoeck T (2011b) Novel kinetoplastids associated with hypersaline anoxic lakes in the Eastern Mediterranean deep-sea. Deep-Sea Res 58:1040–1048CrossRefGoogle Scholar
  19. Edgcomb VP, Orsi W, Taylor GT, Vdacny P, Taylor C, Suarez P, Epstein S (2011c) Accessing marine protists from the anoxic Cariaco Basin. ISME J 5:1237–1241PubMedCrossRefGoogle Scholar
  20. Elloumi J, Carrias J-F, Ayadi H, Sime-Ngando T, Boukhris M, Bouain A (2006) Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax. Tunisia Estuar Coast Shelf Sci 67:21–29CrossRefGoogle Scholar
  21. Embley TM, Finlay BJ (1993) Systematic and morphological diversity of endosymbiotic methanogens in anaerobic ciliates. Antonie van Leeuwenhoek 64:261–271PubMedCrossRefGoogle Scholar
  22. Embley TM, Finlay BJ (1994) The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140:225–235PubMedCrossRefGoogle Scholar
  23. Fenchel T, Finlay BJ (1991) The biology of free-living anaerobic ciliates. Eur J Protistol 26:201–215PubMedCrossRefGoogle Scholar
  24. Finlay BJ (1990) Physiological ecology of free-living protozoa. Adv Microbiol Ecol 11:1–34CrossRefGoogle Scholar
  25. Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JL, D’Auria G, de Lima Alves F, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813PubMedCrossRefGoogle Scholar
  26. Hauer G, Rogerson A (2005) Heterotrophic protozoa from hypersaline environments. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht, pp 519–540CrossRefGoogle Scholar
  27. Hickman C (2005) The influence of cooperative bacteria on animal host biology. In: McFall-Ngai MJ, Henderson B, Ruby EG (eds) Advances in molecular and cellular microbiology. Cambridge Press, Cambridge, 61 ppGoogle Scholar
  28. Nowack EC, Melkonin M (2010) Endosymbiotic associations within protists. Philos Trans R Soc 365:699–712CrossRefGoogle Scholar
  29. Oren A (2000) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Indust Microbiol Biotechnol 28:56–63Google Scholar
  30. Orsi W, Charvet S, Bernhard J, Edgcomb VP (2012) Prevalence of partnerships between bacteria and ciliates in oxygen-depleted marine water columns. Front Ext Microbiol 3:341Google Scholar
  31. Pedros-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155PubMedCrossRefGoogle Scholar
  32. Por F (1980) A classification of hypersaline waters, based on trophic criteria. Mar Ecol 1:121–131CrossRefGoogle Scholar
  33. Ramos-Cormenzana A (1991) Halophilic organisms and their environment. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum Press, New York, pp 15–24CrossRefGoogle Scholar
  34. Sass AM, Sass H, Coolen MJ, Cypionka H, Overmann J (2001) Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania basin, Mediterranean Sea). Appl Environ Microbiol 67:5392–5402PubMedCrossRefGoogle Scholar
  35. Stock A, Breiner H-W, Pachiadaki M, Edgcomb V, Filker S, LaCono V, Yakimov MM, Stoeck T (2011) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34PubMedCrossRefGoogle Scholar
  36. Stoeck T, Fowle WH, Epstein SS (2003) Methodology of protistan discovery: from rRNA detection to quality scanning electron microscope images. Appl Environ Microbiol 69:6856–6863PubMedCrossRefGoogle Scholar
  37. Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157:31–43PubMedCrossRefGoogle Scholar
  38. Taylor GT, Scranton ML, Iabichella M, Ho T-Y, Thunell RC, Muller-Karger F, Varela R (2001) Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr 46:148–163CrossRefGoogle Scholar
  39. Taylor GT, Iabichella-Armas M, Varela R, Müller-Karger F, Lin X, Scranton ML (2006) Microbial ecology of the Cariaco basin’s redoxcline. In: Neretin NL (ed) Past and present water column anoxia. Springer, Dordrecht, pp 473–499Google Scholar
  40. Tribovillard N, Bout-Roumazeilles V, Algeo T, Lyons TW, Sionneau T, Montero-Serrano JC, Riboulleau A, Baudin F (2008) Paleodepositional conditions in the Orca Basin as inferred from organic matter and trace metal contents. Mar Geol 254:62–72CrossRefGoogle Scholar
  41. van der Wielen PW, Heijs SK (2007) Sulfate-reducing prokaryotic communities in two deep hypersaline anoxic basins in the Eastern Mediterranean deep sea. Environ Microbiol 9:1335–1340PubMedCrossRefGoogle Scholar
  42. van der Wielen PW, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123PubMedCrossRefGoogle Scholar
  43. van Hoek AH, van Alen TA, Sprakel VS, Leunissen JA, Brigge T, Vogels GD, Hackstein JH (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258PubMedCrossRefGoogle Scholar
  44. Yakimov MM, Giuliano L, Cappello S, Denaro R, Golyshin PN (2007a) Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania (eastern Mediterranean). Orig Life Evol Biosph 37:177–188PubMedCrossRefGoogle Scholar
  45. Yakimov MM, La Cono V, Denaro R, D’Auria G, Decembrini F, Timmis KN, Golyshin PN, Giuliano L (2007b) Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, eastern Mediterranean Sea. ISME J 1:743–755PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations