Advertisement

Expanding Limits for Life to a New Dimension: Microbial Growth at Hypergravity

  • Shigeru DeguchiEmail author
  • Koki Horikoshi
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 27)

Abstract

Microorganisms show robust growth under a wide range of simulated hypergravity conditions up to 403,627 × g. The finding expands the limits for life into the hypergravity regime, where this had not been seriously considered before, and is of significance in considering the emergence, transport, adaptation, and evolution of life in extraterrestrial habitats.

Keywords

Neutron Star Space Flight Simulated Microgravity Extrasolar Planet Paracoccus Denitrificans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe F (2007) Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Biosci Biotechnol Biochem 71:2347–2357PubMedCrossRefGoogle Scholar
  2. Bouloc P, D’Ari R (1991) Escherichia coli metabolism in space. J Gen Microbiol 137:2839–2843PubMedCrossRefGoogle Scholar
  3. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297PubMedGoogle Scholar
  4. Brown RB, Klaus D, Todd P (2002) Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency of E. coli. Microgravity Sci Technol 13:24–29PubMedCrossRefGoogle Scholar
  5. Ciferri O, Tiboni O, Pasquale GD, Orlandoni AM, Marchesi ML (1986) Effects of microgravity on genetic recombination in Escherichia coli. Naturwissenschaften 73:418–421PubMedCrossRefGoogle Scholar
  6. Deguchi S, Shimoshige H, Tsudome M, Mukai S, Corkery RW, Ito S, Horikoshi K (2011) Microbial growth at hyperaccelerations up to 403,627  ×  g. Proc Natl Acad Sci U S A 108:7997–8002PubMedCrossRefGoogle Scholar
  7. Demain AL, Fang A (2001) Secondary metabolism in simulated microgravity. Chem Rec 1:333–346PubMedCrossRefGoogle Scholar
  8. Des Marais DJ, Nuth JA III, Allamandola LJ, Boss AP, Farmer JD, Hoehler TM, Jakosky BM, Meadows VS, Pohorille A, Runnegar B, Spormann AM (2008) The NASA astrobiology roadmap. Astrobiology 8:715–730PubMedCrossRefGoogle Scholar
  9. Diekert K, de Kroon AIPM, Kispal G, Lill R (2001) Isolation and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. In: Schon EA, Pon LA (eds) Mitochondria. Academic, San Diego, pp 37–51CrossRefGoogle Scholar
  10. Drake FD (1973) Life on a neutron star: an interview with Frank Drake. Astronomy 1:5–8Google Scholar
  11. Eisenhardt PRM, Griffith RL, Stern D, Wright EL, Ashby MLN, Brodwin M, Brown MJI, Bussmann RS, Dey A, Ghez AM, Glikman E, Gonzalez AH, Kirkpatirck JD, Konopacky Q, Mainzer A, Vollbach D, Wright SA (2010) Ultracool field brown dwarf candidates selected at 4.5 μm. Astron J 139:2455–2464CrossRefGoogle Scholar
  12. Erb TJ, Kiefer P, Hattendorf B, Günther D, Vorholt JA (2012) GFAJ-1 is an arsenate-resistant, phosphate-dependent organism. Science 337:467–470PubMedCrossRefGoogle Scholar
  13. Fajardo-Cavazos P, Schuerger AC, Nicholson WL (2006) Testing interplanetary transfer of bacteria between earth and mars as a result of natural impact phenomena and human spaceflight activities. Acta Astronaut 60:534–540CrossRefGoogle Scholar
  14. Fang A, Pierson DL, Koenig DW, Mishra SK, Demain AL (1997) Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium. Appl Environ Microbiol 63:4090–4092PubMedGoogle Scholar
  15. Forward RL (1980) Dragon’s egg. The Ballantine Publishing Group, New YorkGoogle Scholar
  16. Gasset G, Tixador R, Eche B, Lapchine L, Moatti N, Toorop P, Woldringh C (1994) Growth and division of Escherichia coli under microgravity conditions. Res Microbiol 145:111–120PubMedCrossRefGoogle Scholar
  17. Hewish A, Bell SJ, Pilkington JDH, Scott PF, Collins RA (1968) Observation of a rapidly pulsating radio source. Nature 217:709–713CrossRefGoogle Scholar
  18. Horikoshi K (1996) Alkaliphiles – from an industrial point of view. FEMS Microbiol Rev 18:259–270Google Scholar
  19. Horikoshi K, Bull AT (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Tokyo, pp 4–15CrossRefGoogle Scholar
  20. Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46PubMedCrossRefGoogle Scholar
  21. Ishii A, Sato T, Wachi M, Nagai K, Kato C (2004) Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150:1965–1972PubMedCrossRefGoogle Scholar
  22. Johanson K, Allen PL, Lewis F, Cubano LA, Hyman LE, Hammond TG (2002) Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture. J Appl Physiol 93:2171–2180PubMedGoogle Scholar
  23. Kacena MA, Merrell GA, Manfredi B, Smith EE, Klaus DM, Todd P (1999) Bacterial growth in space flight: logistic growth curve parameters for Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 51:229–234PubMedCrossRefGoogle Scholar
  24. Kato Y, Mogami Y, Baba SA (2003) Responses to hypergravity in proliferation of Paramecium tetraurelia. Zool Sci 20:1373–1380PubMedCrossRefGoogle Scholar
  25. Klaus DM (1998) Microgravity and its implications for fermentation biotechnology. Trends Biotechnol 16:369–373PubMedCrossRefGoogle Scholar
  26. Klaus D, Simske S, Todd P, Stodieck L (1997) Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143:449–455PubMedCrossRefGoogle Scholar
  27. Koyama S, Fujii S, Aizawa M (2002) Post-transcriptional regulation of immunomodulatory cytokines production in human skin fibroblasts by intense mechanical stresses. J Biosci Bioeng 93:234–239PubMedGoogle Scholar
  28. Lattimer JM, Prakash M (2004) The physics of neutron stars. Science 304:536–542PubMedCrossRefGoogle Scholar
  29. Leggett SK, Cushing MC, Saumon D, Marley MS, Roellig TL, Warren SC, Burningham B, Jones HRA, Kirkpatrick JD, Lodieu N, Lucas PW, Mainzer AK, Martin EL, McCaughrean MJ, Pinfield DJ, Sloan G, Smart RL, Tamura M, van Cleve J (2009) The physical properties of four 600K T dwarfs. Astrophys J 695:1517–1526CrossRefGoogle Scholar
  30. Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms. Prentice Hall, Upper Saddle RiverGoogle Scholar
  31. Manchester RN (2004) Observational properties of pulsars. Science 304:542–546PubMedCrossRefGoogle Scholar
  32. Mastrapa RME, Glanzberg H, Head JN, Melosh HJ, Nicholson WL (2001) Survival of bacteria exposed to extreme acceleration: implications for panspermia. Earth Planet Sci Lett 189:1–8CrossRefGoogle Scholar
  33. Mennigmann HD, Lange M (1986) Growth and differentiation of Bacillus subtilis under microgravity. Naturwissenschaften 73:415–417PubMedCrossRefGoogle Scholar
  34. Montgomery POB, Orden FV, Rosenblum E (1963) A relationship between growth and gravity in bacteria. Aerosp Med 34:352–354Google Scholar
  35. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572PubMedCrossRefGoogle Scholar
  36. Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL (2000) Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun 68:3147–3152PubMedCrossRefGoogle Scholar
  37. Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL (2004) Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68:345–361PubMedCrossRefGoogle Scholar
  38. Potekhin AY, Yakovlev DG, Chabrier G, Gnedin OY (2003) Thermal structure and cooling of superfluid neutron stars with accreted magnetized envelopes. Astrophys J 594:404–418CrossRefGoogle Scholar
  39. Purevdorj-Gage B, Sheehan KB, Hyman LE (2006) Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl Environ Microbiol 72:4569–4575PubMedCrossRefGoogle Scholar
  40. Reaves ML, Sinha S, Rabinowitz JD, Kruglyak L, Redfield RJ (2012) Absence of detectable arsenate in DNA from arsenate-grown GFAJ-1 cells. Science 337:470–473PubMedCrossRefGoogle Scholar
  41. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101PubMedCrossRefGoogle Scholar
  42. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  43. Schleifer K-H (2004) Microbial diversity: facts, problems and prospects. Syst Appl Microbiol 27:3–9PubMedCrossRefGoogle Scholar
  44. Schneider J (1995) The extrasolar planets encyclopaedia. http://www.exoplanet.eu/
  45. Schulze-Makuch D, Irwin LN (2008) Life in the universe: expectations and constraints. Springer, BerlinCrossRefGoogle Scholar
  46. Takai K (2011) Limits of life and the biosphere: lessons from the detection of microorganisms in the deep sea and deep subsurface of the earth. In: Gargaud M, López-Garcìa P, Martin H (eds) Origins and evolution of life: an astrobiological perspective. Cambridge University Press, Cambridge, pp 469–486CrossRefGoogle Scholar
  47. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954PubMedCrossRefGoogle Scholar
  48. Taylor GR (1974) Space microbiology. Annu Rev Microbiol 28:121–137PubMedCrossRefGoogle Scholar
  49. Todd P (1989) Gravity-dependent phenomena at the scale of the single cell. Am Soc Grav Space Biol Bull 2:95–113Google Scholar
  50. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583PubMedCrossRefGoogle Scholar
  51. Wilson JW, Ott CM, Ramamurthy R, Porwollik S, McClelland M, Pierson DL, Nickerson CA (2002a) Low-shear modeled microgravity alters the Salmonella enterica serovar Typhimurium stress response in an rpos-independent manner. Appl Environ Microbiol 68:5408–5416PubMedCrossRefGoogle Scholar
  52. Wilson JW, Ramamurthy R, Porwollik S, McClelland M, Hammond T, Allen P, Ott CM, Nickerson CA (2002b) Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci U S A 99:13807–13812PubMedCrossRefGoogle Scholar
  53. Wilson JW, Ott CM, Höner zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci U S A 104:16299–16304PubMedCrossRefGoogle Scholar
  54. Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PC, Anbar AD, Oremland RS (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–1166PubMedCrossRefGoogle Scholar
  55. Wolszczan A, Frail DA (1992) A planetary system around the millisecond pulsar PSR1257  +  12. Nature 355:145–147CrossRefGoogle Scholar
  56. Yoshida N, Minamimura T, Yoshida T, Ogawa K (1999) Effect of hypergravitational stress on microbial cell viability. J Biosci Bioeng 88:342–344PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of BiogeosciencesJapan Agency form Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations