Skip to main content

Expanding Limits for Life to a New Dimension: Microbial Growth at Hypergravity

  • Chapter
  • First Online:
Book cover Polyextremophiles

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 27))

Abstract

Microorganisms show robust growth under a wide range of simulated hypergravity conditions up to 403,627 × g. The finding expands the limits for life into the hypergravity regime, where this had not been seriously considered before, and is of significance in considering the emergence, transport, adaptation, and evolution of life in extraterrestrial habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F (2007) Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Biosci Biotechnol Biochem 71:2347–2357

    Article  PubMed  CAS  Google Scholar 

  • Bouloc P, D’Ari R (1991) Escherichia coli metabolism in space. J Gen Microbiol 137:2839–2843

    Article  PubMed  CAS  Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297

    PubMed  CAS  Google Scholar 

  • Brown RB, Klaus D, Todd P (2002) Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency of E. coli. Microgravity Sci Technol 13:24–29

    Article  PubMed  Google Scholar 

  • Ciferri O, Tiboni O, Pasquale GD, Orlandoni AM, Marchesi ML (1986) Effects of microgravity on genetic recombination in Escherichia coli. Naturwissenschaften 73:418–421

    Article  PubMed  CAS  Google Scholar 

  • Deguchi S, Shimoshige H, Tsudome M, Mukai S, Corkery RW, Ito S, Horikoshi K (2011) Microbial growth at hyperaccelerations up to 403,627  ×  g. Proc Natl Acad Sci U S A 108:7997–8002

    Article  PubMed  CAS  Google Scholar 

  • Demain AL, Fang A (2001) Secondary metabolism in simulated microgravity. Chem Rec 1:333–346

    Article  PubMed  CAS  Google Scholar 

  • Des Marais DJ, Nuth JA III, Allamandola LJ, Boss AP, Farmer JD, Hoehler TM, Jakosky BM, Meadows VS, Pohorille A, Runnegar B, Spormann AM (2008) The NASA astrobiology roadmap. Astrobiology 8:715–730

    Article  PubMed  Google Scholar 

  • Diekert K, de Kroon AIPM, Kispal G, Lill R (2001) Isolation and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. In: Schon EA, Pon LA (eds) Mitochondria. Academic, San Diego, pp 37–51

    Chapter  Google Scholar 

  • Drake FD (1973) Life on a neutron star: an interview with Frank Drake. Astronomy 1:5–8

    Google Scholar 

  • Eisenhardt PRM, Griffith RL, Stern D, Wright EL, Ashby MLN, Brodwin M, Brown MJI, Bussmann RS, Dey A, Ghez AM, Glikman E, Gonzalez AH, Kirkpatirck JD, Konopacky Q, Mainzer A, Vollbach D, Wright SA (2010) Ultracool field brown dwarf candidates selected at 4.5 μm. Astron J 139:2455–2464

    Article  CAS  Google Scholar 

  • Erb TJ, Kiefer P, Hattendorf B, Günther D, Vorholt JA (2012) GFAJ-1 is an arsenate-resistant, phosphate-dependent organism. Science 337:467–470

    Article  PubMed  CAS  Google Scholar 

  • Fajardo-Cavazos P, Schuerger AC, Nicholson WL (2006) Testing interplanetary transfer of bacteria between earth and mars as a result of natural impact phenomena and human spaceflight activities. Acta Astronaut 60:534–540

    Article  Google Scholar 

  • Fang A, Pierson DL, Koenig DW, Mishra SK, Demain AL (1997) Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium. Appl Environ Microbiol 63:4090–4092

    PubMed  CAS  Google Scholar 

  • Forward RL (1980) Dragon’s egg. The Ballantine Publishing Group, New York

    Google Scholar 

  • Gasset G, Tixador R, Eche B, Lapchine L, Moatti N, Toorop P, Woldringh C (1994) Growth and division of Escherichia coli under microgravity conditions. Res Microbiol 145:111–120

    Article  PubMed  CAS  Google Scholar 

  • Hewish A, Bell SJ, Pilkington JDH, Scott PF, Collins RA (1968) Observation of a rapidly pulsating radio source. Nature 217:709–713

    Article  Google Scholar 

  • Horikoshi K (1996) Alkaliphiles – from an industrial point of view. FEMS Microbiol Rev 18:259–270

    CAS  Google Scholar 

  • Horikoshi K, Bull AT (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Tokyo, pp 4–15

    Chapter  Google Scholar 

  • Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46

    Article  PubMed  CAS  Google Scholar 

  • Ishii A, Sato T, Wachi M, Nagai K, Kato C (2004) Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150:1965–1972

    Article  PubMed  CAS  Google Scholar 

  • Johanson K, Allen PL, Lewis F, Cubano LA, Hyman LE, Hammond TG (2002) Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture. J Appl Physiol 93:2171–2180

    PubMed  Google Scholar 

  • Kacena MA, Merrell GA, Manfredi B, Smith EE, Klaus DM, Todd P (1999) Bacterial growth in space flight: logistic growth curve parameters for Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 51:229–234

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Mogami Y, Baba SA (2003) Responses to hypergravity in proliferation of Paramecium tetraurelia. Zool Sci 20:1373–1380

    Article  PubMed  Google Scholar 

  • Klaus DM (1998) Microgravity and its implications for fermentation biotechnology. Trends Biotechnol 16:369–373

    Article  PubMed  CAS  Google Scholar 

  • Klaus D, Simske S, Todd P, Stodieck L (1997) Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143:449–455

    Article  PubMed  CAS  Google Scholar 

  • Koyama S, Fujii S, Aizawa M (2002) Post-transcriptional regulation of immunomodulatory cytokines production in human skin fibroblasts by intense mechanical stresses. J Biosci Bioeng 93:234–239

    PubMed  CAS  Google Scholar 

  • Lattimer JM, Prakash M (2004) The physics of neutron stars. Science 304:536–542

    Article  PubMed  CAS  Google Scholar 

  • Leggett SK, Cushing MC, Saumon D, Marley MS, Roellig TL, Warren SC, Burningham B, Jones HRA, Kirkpatrick JD, Lodieu N, Lucas PW, Mainzer AK, Martin EL, McCaughrean MJ, Pinfield DJ, Sloan G, Smart RL, Tamura M, van Cleve J (2009) The physical properties of four 600K T dwarfs. Astrophys J 695:1517–1526

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Manchester RN (2004) Observational properties of pulsars. Science 304:542–546

    Article  PubMed  CAS  Google Scholar 

  • Mastrapa RME, Glanzberg H, Head JN, Melosh HJ, Nicholson WL (2001) Survival of bacteria exposed to extreme acceleration: implications for panspermia. Earth Planet Sci Lett 189:1–8

    Article  CAS  Google Scholar 

  • Mennigmann HD, Lange M (1986) Growth and differentiation of Bacillus subtilis under microgravity. Naturwissenschaften 73:415–417

    Article  PubMed  CAS  Google Scholar 

  • Montgomery POB, Orden FV, Rosenblum E (1963) A relationship between growth and gravity in bacteria. Aerosp Med 34:352–354

    Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  PubMed  CAS  Google Scholar 

  • Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL (2000) Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun 68:3147–3152

    Article  PubMed  CAS  Google Scholar 

  • Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL (2004) Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68:345–361

    Article  PubMed  CAS  Google Scholar 

  • Potekhin AY, Yakovlev DG, Chabrier G, Gnedin OY (2003) Thermal structure and cooling of superfluid neutron stars with accreted magnetized envelopes. Astrophys J 594:404–418

    Article  CAS  Google Scholar 

  • Purevdorj-Gage B, Sheehan KB, Hyman LE (2006) Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl Environ Microbiol 72:4569–4575

    Article  PubMed  CAS  Google Scholar 

  • Reaves ML, Sinha S, Rabinowitz JD, Kruglyak L, Redfield RJ (2012) Absence of detectable arsenate in DNA from arsenate-grown GFAJ-1 cells. Science 337:470–473

    Article  PubMed  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  PubMed  CAS  Google Scholar 

  • Schleifer K-H (2004) Microbial diversity: facts, problems and prospects. Syst Appl Microbiol 27:3–9

    Article  PubMed  Google Scholar 

  • Schneider J (1995) The extrasolar planets encyclopaedia. http://www.exoplanet.eu/

  • Schulze-Makuch D, Irwin LN (2008) Life in the universe: expectations and constraints. Springer, Berlin

    Book  Google Scholar 

  • Takai K (2011) Limits of life and the biosphere: lessons from the detection of microorganisms in the deep sea and deep subsurface of the earth. In: Gargaud M, López-Garcìa P, Martin H (eds) Origins and evolution of life: an astrobiological perspective. Cambridge University Press, Cambridge, pp 469–486

    Chapter  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954

    Article  PubMed  CAS  Google Scholar 

  • Taylor GR (1974) Space microbiology. Annu Rev Microbiol 28:121–137

    Article  PubMed  CAS  Google Scholar 

  • Todd P (1989) Gravity-dependent phenomena at the scale of the single cell. Am Soc Grav Space Biol Bull 2:95–113

    CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Wilson JW, Ott CM, Ramamurthy R, Porwollik S, McClelland M, Pierson DL, Nickerson CA (2002a) Low-shear modeled microgravity alters the Salmonella enterica serovar Typhimurium stress response in an rpos-independent manner. Appl Environ Microbiol 68:5408–5416

    Article  PubMed  CAS  Google Scholar 

  • Wilson JW, Ramamurthy R, Porwollik S, McClelland M, Hammond T, Allen P, Ott CM, Nickerson CA (2002b) Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci U S A 99:13807–13812

    Article  PubMed  CAS  Google Scholar 

  • Wilson JW, Ott CM, Höner zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci U S A 104:16299–16304

    Article  PubMed  CAS  Google Scholar 

  • Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PC, Anbar AD, Oremland RS (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–1166

    Article  PubMed  CAS  Google Scholar 

  • Wolszczan A, Frail DA (1992) A planetary system around the millisecond pulsar PSR1257  +  12. Nature 355:145–147

    Article  Google Scholar 

  • Yoshida N, Minamimura T, Yoshida T, Ogawa K (1999) Effect of hypergravitational stress on microbial cell viability. J Biosci Bioeng 88:342–344

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Deguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Deguchi, S., Horikoshi, K. (2013). Expanding Limits for Life to a New Dimension: Microbial Growth at Hypergravity. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_20

Download citation

Publish with us

Policies and ethics