Adaptation of Antarctic Freshwater Green Algae to Extreme Environments

  • Hanhua HuEmail author
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 27)


Antarctica as the coldest area on earth presents an extremely harsh environment for all living organisms inhabiting this frigid zone. Freshwater green algae, such as Chlamydomonas, Stichococcus, Chlorella, and Scenedesmus, have been isolated from Antarctica. These strains are distributed in all the areas of Antarctica and have successfully adapted to the extreme environmental conditions. The freshwater green algae residing in this area have evolved a set of strategies to counteract the effects of the extremely low and fluctuating temperature, desiccation, ultraviolet radiation, freeze-thaw cycles, etc. These adaptations include the alteration of cell morphology, ultrastructure, physiology, biochemical composition, and gene expression. Currently, although some genes and proteins related to cold adaptation or acclimation have been identified in these algae, the corresponding molecular mechanism is still obscure. The goal of this review is to describe the adaptive strategies of Antarctic freshwater green algae to extreme environments.


Green Alga Freeze Tolerance Late Embryogenesis Abundant Cold Adaptation Lipid Head Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Becker EW (1982) Physiological studies on Antarctic Prasiola crispa and Nostoc commune at low temperatures. Polar Biol 1:99–104Google Scholar
  2. Buma AGJ, Engelen AH, Gieskes WWC (1997) Wavelength dependent induction of thymine dimers and growth rate reduction in the marine diatom Cyclotella sp. exposed to ultraviolet radiation. Mar Ecol Prog Ser 153:91–97CrossRefGoogle Scholar
  3. Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci U S A 104:18073–18078PubMedCrossRefGoogle Scholar
  4. Chen Z, He C, Hu H (2012a) Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus. Extremophiles 16:127–133PubMedCrossRefGoogle Scholar
  5. Chen Z, Gong Y, Fang X, Hu H (2012b) Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production. World J Microbiol Biotechnol 28:3219–3225PubMedCrossRefGoogle Scholar
  6. Chong G-L, Chu W-L, Othman RY, Phang S-M (2011) Differential gene expression of an Antarctic Chlorella in response to temperature stress. Polar Biol 34:637–645CrossRefGoogle Scholar
  7. Coles JF, Jones RC (2000) Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. J Phycol 36:7–16CrossRefGoogle Scholar
  8. De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc R Soc B 276:3591–3599PubMedCrossRefGoogle Scholar
  9. Di Martino Rigano V, Vona V, Lobosco O, Carillo P, Lunn JE, Carfagna S, Esposito S, Caiazzo M, Rigano C (2006) Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ 29:1400–1409CrossRefGoogle Scholar
  10. Ding Y, Miao J-L, Wang Q-F, Zheng Z, Li G-Y, Jian J-C, Wu Z-H (2007) Purification and characterization of a psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. strain ICE-L. Polar Biol 31:23–30CrossRefGoogle Scholar
  11. Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11:211–216PubMedCrossRefGoogle Scholar
  12. Frederick JE, Qu Z, Booth CR (1998) Ultraviolet radiation at sites on the Antarctic coast. Photochem Photobiol 68:183–190CrossRefGoogle Scholar
  13. Hawes I (1990) Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctica. Phycologia 29:326–331CrossRefGoogle Scholar
  14. Hawes I, Smith R, Howard-Williams C, Schwarz A-M (1999) Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarct Sci 11:198–208CrossRefGoogle Scholar
  15. Hu H, Li H, Xu X (2008) Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 47:28–34CrossRefGoogle Scholar
  16. Hughes KA (2006) Solar UV-B radiation, associated with ozone depletion, inhibits the Antarctic terrestrial microalga, Stichococcus bacillaris. Polar Biol 29:327–336CrossRefGoogle Scholar
  17. Huiskes AD (2007) Evolution and biodiversity in the Antarctic: the response of life to change. Antarct Sci 19:279–281CrossRefGoogle Scholar
  18. Lesser MP, Barry TM, Banaszak AT (2002) Effects of UV radiation on a chlorophyte alga (Scenedesmus sp.) isolated from the fumarole fields of Mt. Erebus, Antarctica. J Phycol 38:473–481Google Scholar
  19. Li H, Liu X, Wang Y, Hu H, Xu X (2009) Enhanced expression of antifreeze protein genes drives the development of freeze tolerance in an Antarctica isolate of Chlorella. Prog Nat Sci 19:1059–1062CrossRefGoogle Scholar
  20. Ling HU (2001) Snow algae of the Windmill Islands, continental Antarctica: Desmotetra aureospora, sp. nov. and D. antarctica, comb. nov. (Chlorophyta). J Phycol 37:160–174CrossRefGoogle Scholar
  21. Liu X, Wang Y, Gao H, Xu X (2011) Identification and characterization of genes encoding two novel LEA proteins in Antarctic and temperate strains of Chlorella vulgaris. Gene 482:51–58PubMedCrossRefGoogle Scholar
  22. Loppes R, Devos N, Willem S, Barthélemy P, Matagne RF (1996) Effect of temperature on two enzymes from a psychrophilic Chloromonas (Chlorophyta). J Phycol 32:276–278CrossRefGoogle Scholar
  23. Lu Y, Chi X, Yang Q, Li Z, Liu S, Gan Q, Qin S (2009) Molecular cloning and stress-dependent expression of a gene encoding ∆12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles 13:875–884PubMedCrossRefGoogle Scholar
  24. Lu Y, Chi X, Li Z, Yang Q, Li F, Liu S, Gan Q, Qin S (2010) Isolation and characterization of a stress-dependent plastidial ∆12 fatty acid desaturase from the Antarctic microalga Chlorella vulgaris NJ-7. Lipids 45:179–187PubMedCrossRefGoogle Scholar
  25. McKnight DM, Howes BL, Taylor CD, Goehringer DD (2000) Phytoplankton dynamics in a stably stratified Antarctic lake during winter darkness. J Phycol 36:852–861CrossRefGoogle Scholar
  26. Melis A (1998) Photostasis in plants: mechanisms and regulation. In: Thistle WA (ed) Photostasis and related phenomena. Plenum Press, New York, pp 207–221CrossRefGoogle Scholar
  27. Mock T, Hoch N (2005) Long-term acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus. Photosynth Res 85:307–317PubMedCrossRefGoogle Scholar
  28. Morgan RM, Ivanov AG, Priscu JC, Maxwell DP, Huner NPA (1998) Structure and composition of the photochemical apparatus of the Antarctic green alga, Chlamydomonas subcaudata. Photosynth Res 56:303–314CrossRefGoogle Scholar
  29. Morgan-Kiss R, Ivanov AG, Williams J, Khan M, Huner NPA (2002a) Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochim Biophys Acta 1561:251–265PubMedCrossRefGoogle Scholar
  30. Morgan-Kiss RM, Ivanov AG, Huner NPA (2002b) The Antarctic psychrophile, Chlamydomonas subcaudata, is deficient in state I-state II transitions. Planta 214:435–445PubMedCrossRefGoogle Scholar
  31. Morgan-Kiss RM, Ivanov AG, Pocock T, Król M, Gudynaite-Savitch L, Hüner NPA (2005) The Antarctic psychrophile, Chlamydomonas raudensis Ettl (UWO241) (Chlorophyceae, Chlorophyta) exhibits a limited capacity to photoacclimate to red light. J Phycol 41:791–800CrossRefGoogle Scholar
  32. Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol R 70:222–252CrossRefGoogle Scholar
  33. Morgan-Kiss RM, Ivanov AG, Modla S, Czymmek K, Hüner NPA, Priscu JC, Lisle JT, Hanson TE (2008) Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles 12:701–711PubMedCrossRefGoogle Scholar
  34. Nagao M, Matsui K, Uemura M (2008) Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ 31:872–885PubMedCrossRefGoogle Scholar
  35. Nagashima H, Shimizu M, Ohtani S, Momose H (1993) Effects of temperature on the photosynthesis of Antarctic freshwater green algae (abstract). Proc NIPR Symp Polar Biol 6:178Google Scholar
  36. Nagashima H, Matsumoto GI, Ohtani S, Momose H (1995) Temperature acclimation and the fatty acid composition of an Antarctic green alga Chlorella. Proc NIPR Symp Polar Biol 8:194–199Google Scholar
  37. Pocock T, Lachance M-A, Pröschold T, Priscu JC, Kim SS, Hüner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis Ettl. (UWO 241) Chlorophyceae. J Phycol 40:1138–1148CrossRefGoogle Scholar
  38. Pocock T, Vetterli A, Falk S (2011) Evidence for phenotypic plasticity in the Antarctic extremophile Chlamydomonas raudensis Ettl. UWO 241. J Exp Bot 62:1169–1177PubMedCrossRefGoogle Scholar
  39. Reyes JL, Rodrigo M-J, Colmenero-Flores JM, Gil J-V, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28:709–718CrossRefGoogle Scholar
  40. Singh J, Dubey AK, Singh RP (2011) Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Rev Environ Sci Biotechnol 10:63–77CrossRefGoogle Scholar
  41. Teoh M-L, Chu W-L, Marchant H, Phang S-M (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 16:421–430CrossRefGoogle Scholar
  42. Vona V, Di Martino Rigano V, Lobosco O, Carfagna S, Esposito S, Rigano C (2004) Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytol 163:325–331CrossRefGoogle Scholar
  43. Wang Y, Liu X, Gao H, Xu X (2011) Characterization of the tandem-arrayed hiC6 genes in Antarctic and temperate strains of Chlorella vulgaris. FEMS Microbiol Lett 325:130–139PubMedCrossRefGoogle Scholar
  44. Wiencke C, Dieck I (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar Ecol Prog Ser 59:157–170CrossRefGoogle Scholar
  45. Wong CY, Chu WL, Marchant H, Phang SM (2007) Comparing the response of Antarctic, tropical and temperate microalgae to ultraviolet radiation (UVR) stress. J Appl Phycol 19:689–699CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of HydrobiologyThe Chinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations