Skip to main content

Microbial Communities Thriving in Various Ice Ecosystems

Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE,volume 27)

Abstract

The different components of the Earth’s cryosphere are now recognized as active ecosystems despite the harsh conditions such as low temperature, danger of desiccation, high doses of UV radiation, low-nutrient concentrations, or also long periods of darkness as occurring in polar regions. However, due to multiple adaptations to life in the cold, these living communities show metabolic rates which can contribute substantially to the global carbon content. So far it is reported from freshwater systems where mainly microbes can thrive in a layered structure composed of ice and slush and can be associated with clusters of sediments, respectively. Sea ice is probably the most prominent ecosystems where brine channels are the living space of microbial and metazoan communities of high biodiversity. Glacial systems show well-developed consortia in so-called cryoconite holes which can be understood as mini-lakes. Considering the vast amounts of ice and snow of the cryosphere which are prone to be lost by melting, the carbon being produced in those systems is a substantial contribution to adjacent habitats.

Keywords

  • Microbial Community
  • Airborne Bacterium
  • Microbial Life
  • Cryoconite Hole
  • Temperate Glacier

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bauer F (1819) Microscopical observations on the red snow. Q L Lit Sci Arts 7:222–229

    Google Scholar 

  • Bauer H, Kasper-Giebl A, Löflund M, Giebl H, Hitzenberger R, Zibuschka F, Puxbaum H (2002) The contribution of bacteria and fungal spores to the organic carbon content of cloud water precipitation and aerosols. Atmos Res 64:109–119

    CrossRef  CAS  Google Scholar 

  • Björnsson H (2002) Subglacial lakes and jökulhlaups in Iceland. Glob Planet Change 35:255–271

    CrossRef  Google Scholar 

  • Brochier C, Philippe H (2002) A non-hyperthermophilic ancestor for bacteria. Nature 217:244

    CrossRef  Google Scholar 

  • Bulat S, Alekhina IA, Blot M, Petit JR, de Angelis M, Wagenbach D, Lipenkov VY, Vasilyeva L, Wloch D, Raynaud DV, Lukin V (2004) DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok: implications for searching life in extreme icy environments. Int J Astrobiol 3:1–12

    Google Scholar 

  • Bulat SA, Alekhina IA, Lipenkov VY, Lukin VV, Marie D, Petit JR (2009) Cell concentrations of microorganisms in glacial and lake ice of the Vostok ice core, East Antarctica. Microbiology (Russia) 78:850–852

    Google Scholar 

  • Burckle LH, Gayley RI, Ram M, Petit J-R (1988) Diatoms in Antarctic ice cores: some implications for the glacial history of Antarctica. Geology 16:326–329

    CrossRef  Google Scholar 

  • Cameron RE, Honour RC, Morelli FA (1977) Environmental impact studies of Antarctic sites. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington, DC, pp 1157–1158

    Google Scholar 

  • Castello JD, Rogers SO (2005) Life in ancient ice. Princeton University Press, Princeton

    Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    CrossRef  PubMed  CAS  Google Scholar 

  • Choi DS, Park YK, Oh SK, Yoon HJ, Kim JC, Seo WJ, Cha SH (1997) Distribution of airborne microorganisms in yellow sands of Korea. J Microbiol 35:1–9

    Google Scholar 

  • Cockell CS, Brack A, Wynn-Williams DD, Baglioni P, Brandstatter F, Demets R, Edwards HGM, Gronstal AL, Kurat G, Lee P, Osinski GR, Pearce DA, Pillinger JM, Roten CA, Sancisi-Frey S (2007) Interplanetary transfer of photosynthesis: an experimental demonstration of a selective dispersal filter in planetary island biogeography. Astrobiology 1:1–9

    CrossRef  Google Scholar 

  • Dimmick RL, Wolochow H, Chatigny MA (1979a) Evidence that bacteria can form new cells in airborne particles. Appl Environ Microbiol 37:924–927

    PubMed  CAS  Google Scholar 

  • Dimmick RL, Wolochow H, Chatigny MA (1979b) Evidence for more than one division of bacteria within airborne particles. Appl Environ Microbiol 38:642–643

    PubMed  CAS  Google Scholar 

  • Fajardo-Cavaros P, Link L, Melosh HJ, Nicholson WL (2005) Bacillus subtilis spores on artificial meteorites survive hypervelocity atmospheric entry: implications for lithopanspermia. Astrobiology 5:726–736

    CrossRef  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    CrossRef  PubMed  CAS  Google Scholar 

  • Garrison VH, Shinn EA, Foreman WT, Griffin DW, Holmes CW, Kellogg CA, Majewski MS, Richardson LL, Ritchie KB, Smith GW (2003) African and Asian dust: from desert soils to coral reefs. Bioscience 53:469–480

    CrossRef  Google Scholar 

  • Gislén T (1948) Aerial plankton and its conditions of life. Biol Rev 23:109–126

    CrossRef  PubMed  Google Scholar 

  • Göttlich E, de Hoog GS, Genilloud O, Jones BE, Marinelli F (2003) MICROMAT: culturable fungal diversity in microbial mats of Antarctic lakes. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, pp 251–254

    Google Scholar 

  • Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104(D24):30,997–31,022

    Google Scholar 

  • Herlihy AT, Mills AL (1986) The pH regime of sediments underlying acidified waters. Biogeochemistry 2:95–99

    CrossRef  Google Scholar 

  • Herlihy LJ, Galloway JN, Mills AL (1987) Bacterial utilization of formic and acetic acid in rainwater. Atmos Environ 21:2397–2402

    CrossRef  CAS  Google Scholar 

  • Horneck G (1993) Responses of Bacillus subtilis spores to space environment: results from experiments in space. Orig Life Evol Biosph 23:37–52

    CrossRef  PubMed  CAS  Google Scholar 

  • Horneck G, Rettberg P (2002) A thin meteorite layer protects bacterial spores in space. In: Astrobiology science conference abstract collection. NASA Ames Research Center, Moffett Field, p 23

    Google Scholar 

  • Horneck G, Bücker H, Reitz G, Requardt H, Dose K, Martens KD, Mennigmann HD, Weber P (1984) Microorganisms in the space environment. Science 225:226–228

    CrossRef  PubMed  CAS  Google Scholar 

  • Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of airborne microbial biodiversity over peninsular Antarctica. Cell Mol Biol 50:537–542

    PubMed  CAS  Google Scholar 

  • IPCC Fourth Assessment Report (AR4) (2007) Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri RK, Reisinger A (eds) IPCC, Geneva, Switzerland, 104 pp

    Google Scholar 

  • Javaux EJ (2006) Extreme life on Earth – past, present and possibly beyond. Res Microbiol 157:37–48

    CrossRef  PubMed  Google Scholar 

  • Jensen LB (1943) Bacteriology of ice. Food Res 8:265–272

    CrossRef  CAS  Google Scholar 

  • Jordan EO (1911) Cold Storage Ice Trade 42:31–32

    Google Scholar 

  • Jordan EO (1938) General bacteriology, 12th edn. W.B. Saunders & Co, Philadelphia, p 322, p 745

    Google Scholar 

  • Karl DM, Bird DF, Bjorkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147

    CrossRef  PubMed  CAS  Google Scholar 

  • Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci U S A 97:1400–1405

    CrossRef  PubMed  CAS  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci U S A 95:7933–7938

    CrossRef  PubMed  CAS  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271

    CrossRef  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals – fundamental and applied aspects. Naturwissenschaften 94:77–99

    CrossRef  PubMed  CAS  Google Scholar 

  • Marshall WA (1996a) Biological particles over Antarctica. Nature 383:680

    CrossRef  CAS  Google Scholar 

  • Marshall WA (1996b) Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytol 134:523–530

    CrossRef  Google Scholar 

  • McKay CP (1997) The search for life on Mars. In: Origins of life and evolution of the biosphere 27. Kluwer Academic, Dordrecht, pp 263–289

    Google Scholar 

  • Nansen F (1897) Farthest North. Harper & Brothers, New York

    Google Scholar 

  • Narlikar JV, Wickramasinghe NC, Wainwright M, Rajaratnam P (2003) Detection of microorganisms at high altitudes. Curr Sci 85:23–29

    Google Scholar 

  • NRC – National Research Council (2006) Preventing the Forward Contamination of Mars Committee on Preventing the Forward Contamination of Mars, National Research Council. ISBN: 0-309-65262-6, 166 pp. Also online available under: http://www.nap.edu/catalog/11381.html

  • Onofri S, Fenice M, Cicalini AR, Tosi S, Magrino A, Pagano S, Selbmann L, Zucconi L, Vishniac HS, Ocampo-Friedmann R, Friedmann FI (2000) Ecology and biology of microfungi from Antarctic rocks and soils. Italy J Zool 67:163–167

    CrossRef  Google Scholar 

  • Paez-Rubio T, Peccia J (2005) Estimating solar and nonsolar inactivation rates of airborne bacteria. J Environ Eng 131:512–517

    CrossRef  CAS  Google Scholar 

  • Parker BC, Simmons Jr GM, Seaburg KG, Cathey DD, Allnutt FTC (1982) Comparative ecology of plankton communities in seven Antarctic oasis lakes. J Plankton Res 4:271–286

    CrossRef  Google Scholar 

  • Peccia J, Werth HM, Miller S, Hernandez M (2001) Effects of relative humidity on the ultraviolet induced inactivation of airborne bacteria. Aerosol Sci Technol 35:728–740

    CrossRef  CAS  Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci U S A 97:1247–1251

    CrossRef  PubMed  CAS  Google Scholar 

  • Priscu JC (2009) Life at the ends of the Earth. Bioscience 59:709–710

    CrossRef  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull A (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 130–145

    Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098

    CrossRef  PubMed  CAS  Google Scholar 

  • Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirshtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144

    CrossRef  PubMed  CAS  Google Scholar 

  • Priscu JP, Adams EE, Pearl HW, Fritsen CH, Dore JE, Lisle JT, Wolf CF, Mikucki JA (2002) Perennial Antarctic lake ice: a refuge for cyanobacteria in an extreme environment. In: Rogers S, Castello J (eds) Life in ancient ice. Princeton Press, Princeton, pp 209–227

    Google Scholar 

  • Psenner R, Sattler B (1998) Life at the freezing point. Science 280:2073–2074

    CrossRef  PubMed  CAS  Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28(2):239–242

    CrossRef  Google Scholar 

  • Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110

    CrossRef  CAS  Google Scholar 

  • Siegert MJ, Carter S, Tabacco I, Popov S, Blankenship DD (2005) A revised inventory of Antarctic subglacial lakes. Antarct Sci 17:453–460

    CrossRef  Google Scholar 

  • Smith RIL (1991) Exotic sporomorpha as indicators of potential immigrant colonists in Antarctica. Grana 30:313–324

    CrossRef  Google Scholar 

  • Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Tranter M, Fountain A, Fritsen C, Lyons B, Statham P, Welch K (2004) Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol Proc 18:379–387

    CrossRef  Google Scholar 

  • Vincent WF, Howard-Williams C (2000) Life on snowball Earth. Science 287:242

    CrossRef  Google Scholar 

  • Wainwright M, Wickramasinghe NC, Narlikar JV, Rajaratnam P (2003) Microorganisms cultured from stratospheric air samples obtained at 41 km. FEMS Microbiol Lett 218:161–165

    CrossRef  PubMed  CAS  Google Scholar 

  • Wainwright M, Wickramasinghe NC, Narlikar JV, Rajaratnam P, Perkins J (2004) Confirmation of the presence of viable but non-culturable bacteria in the stratosphere. Int J Astrobiol 3:13–15

    CrossRef  Google Scholar 

  • Wickramasinghe NC (2004) The Universe: a cryogenic habitat for microbial life. Cryobiology 48:113–125

    CrossRef  PubMed  Google Scholar 

  • Wüest A, Carmack E (2000) A priori estimates of mixing and circulation in the hard-to-reach water body of Lake Vostok. Ocean Modell 2:29–43

    CrossRef  Google Scholar 

  • Wynn-Williams DD (1991) Aerobiology and colonization in Antarctica – the BIOTAS programme. Grana 30:380–393

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Sattler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sattler, B., Post, B., Fritz, A. (2013). Microbial Communities Thriving in Various Ice Ecosystems. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_16

Download citation