Left Out in the Cold: Life in Cryoenvironments

  • Jacqueline GoordialEmail author
  • Guillaume Lamarche-Gagnon
  • Chih-Ying Lay
  • Lyle Whyte
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 27)


Cryoenvironments are generally defined as environments that exist continuously and predominately at subzero temperatures. They exist primarily in polar and alpine regions and consist of large-scale geomorphological features such as permafrost, glaciers, ice caps, and sea ice. Cryoenvironments also include relatively rare subzero habitats such as cold lakes and ponds, which can be permanently ice covered, and subzero saline springs, which flow throughout the year, warmed by geothermal gradients, and maintained liquid due to their high salinity (Andersen et al., 2002; Doyle et al., 2012). The primary constraint to life in cryoenvironments is the availability of liquid water; life needs liquid water to survive, mediate biochemical reactions, provide transport of molecules, and act as a solvent. It is not necessarily subzero temperatures that constrain life in cryoenvironments but rather the conditions that are typically found associated with subzero temperatures, which include freezing, desiccation, or high osmolarity. Microorganisms in subzero environments must, however, be able to cope with the thermodynamic effects of low temperatures including lower reaction rates, increased molecule stability, and conformational changes of proteins (Bakermans, 2008). Because the presence of liquid water in cryoenvironments is often facilitated through the freezing-point depression properties of various solutes, microorganisms must also be able to tolerate osmotic stress, usually in the form of high salinity. Despite these harsh environmental conditions, there is a recent and growing body of evidence that cryophilic microorganisms (those able to reproduce at <0 °C) exist and are metabolically active in these cryoenvironments at ambient temperatures.


Subzero Temperature Green Sulfur Bacterium Permafrost Environment Saline Water Body Permafrost Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ah Tow L, Cowan D (2005) Dissemination and survival of non-indigenous bacterial genomes in pristine Antarctic environments. Extremophiles 9:385–389PubMedGoogle Scholar
  2. Aislabie JM, Chhour K-L, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056Google Scholar
  3. Allen CC, Oehler DZ (2008) A case for ancient springs in Arabia Terra, Mars. Astrobiology 8:1093–1112PubMedGoogle Scholar
  4. Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KWY, Pilak O, Chew HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3:1012–1035PubMedGoogle Scholar
  5. Amato P, Christner BC (2009) Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol 75:711–718PubMedGoogle Scholar
  6. Andersen DT, Pollard WH, McKay CP, Heldmann J (2002) Cold springs in permafrost on Earth and Mars. J Geophys Res Planets 107:5015Google Scholar
  7. Andersen DT, Sumner DY, Hawes I, Webster-Brown J, McKay CP (2011) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9:280–293PubMedGoogle Scholar
  8. Anderson DM (1967) Ice nucleation and substrate-ice interface. Nature 216:563–566Google Scholar
  9. Ayala-del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76:2304–2312PubMedGoogle Scholar
  10. Bakermans C (2008) Limits for microbial life at subzero temperatures – psychrophiles. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Biodiversity to biotechnology. Springer, Berlin, pp 17–28Google Scholar
  11. Bakermans C, Skidmore ML (2011a) Microbial respiration in ice at subzero temperatures (−4 to −33 °C). Environ Microbiol Rep 3:774–782PubMedGoogle Scholar
  12. Bakermans C, Skidmore ML (2011b) Microbial metabolism in ice and brine at −5 °C. Environ Microbiol 13:2269–2278PubMedGoogle Scholar
  13. Bakermans C, Ayala-del-Río HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291PubMedGoogle Scholar
  14. Bakermans C, Bergholz PW, Ayala-del-Río H, Tiedje J (2009) Genomic insights into cold adaptation of permafrost bacteria. In: Margesin R (ed) Permafrost soils. Springer, Berlin, pp 159–168Google Scholar
  15. Bakermans C, Bergholz PW, Rodrigues D, Vishnevetskaya TA, Ayala-del-Río HL, Tiedje J (2012) Genomic and expression analyses of cold-adapted microorganisms. In: Miller RV, Whyte LG (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 126–155Google Scholar
  16. Barbier BA, Dziduch I, Liebner S, Ganzert L, Lantuit H, Pollard W, Wagner D (2012) Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiol Ecol 82(2):287–302PubMedGoogle Scholar
  17. Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl Environ Microbiol 77:3846–3852PubMedGoogle Scholar
  18. Beaty D, Buxbaum K, Meyer M, Barlow N, Boynton W, Clark B, Deming J, Doran P, Edgett K, Hancock S (2006) Findings of the Mars special regions science analysis group. Astrobiology 6:677–732Google Scholar
  19. Bell TH, Yergeau E, Martineau C, Juck D, Whyte LG, Greer CW (2011) Identification of nitrogen-incorporating bacteria in petroleum-contaminated Arctic soils by using [15N]DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77:4163–4171PubMedGoogle Scholar
  20. Bowman JP, McCammon SA, Rea SM, McMeekin TA (2000a) The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol Lett 183:81–88PubMedGoogle Scholar
  21. Bowman JP, Rea SM, McCammon SA, McMeekin TA (2000b) Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ Microbiol 2:227–237PubMedGoogle Scholar
  22. Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”. Microb Ecol 47:300–304PubMedGoogle Scholar
  23. Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275PubMedGoogle Scholar
  24. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18:374–381PubMedGoogle Scholar
  25. Catling DC, Claire MW, Zahnle KJ, Quinn RC, Clark BC, Hecht MH, Kounaves S (2010) Atmospheric origins of perchlorate on Mars and in the Atacama. J Geophys Res 115:E00E11Google Scholar
  26. Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P, Linton M, Patterson MF, Underwood GJC, Mswaka AY, Hallsworth JE (2010) Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci U S A 107:7835–7840PubMedGoogle Scholar
  27. Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15 °C. Appl Environ Microbiol 68:6435–6438PubMedGoogle Scholar
  28. Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol 2:569–580PubMedGoogle Scholar
  29. Collins RE, Carpenter SD, Deming JW (2008) Spatial heterogeneity and temporal dynamics of particles, bacteria, and pEPS in Arctic winter sea ice. J Mar Syst 74:902–917Google Scholar
  30. Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841PubMedGoogle Scholar
  31. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292PubMedGoogle Scholar
  32. Cowan D, Russell N, Mamais A, Sheppard D (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436PubMedGoogle Scholar
  33. Davila AF, Duport LG, Melchiorri R, Jänchen J, Valea S, de los Ríos A, Fairén AG, Möhlmann D, McKay CP, Wierzchos J (2010) Hygroscopic salts and the potential for life on Mars. Astrobiology 10:617–628PubMedGoogle Scholar
  34. Deming JW (2010) Sea ice bacteria and viruses. In: Thomas DN, Dieckmann GS (eds) Sea ice, 2nd edn. Wiley-Blackwell, Oxford, pp 247–282Google Scholar
  35. Doyle S, Dieser M, Broemsen E, Christner B (2012) General characteristics of cold-adapted micro­organisms. In: Miller RV, Whyte LG (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 103–125Google Scholar
  36. Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761PubMedGoogle Scholar
  37. Franzmann PD, Springer N, Ludwig W, Conway De Macario E, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581Google Scholar
  38. Gendrin A, Mangold N, Bibring J-P, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R, LeMouélic S (2005) Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science 307:1587–1591PubMedGoogle Scholar
  39. Gilichinsky D (2003) Permafrost. In: Encyclopedia of environmental microbiology. Wiley, New York. doi: 10.1002/0471263397.ENV147
  40. Gilichinsky DA, Soina VS, Petrova MA (1993) Cryoprotective properties of water in the Earth cryolithosphere and its role in exobiology. Origins Life Evol B 23:65–75Google Scholar
  41. Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost – an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341PubMedGoogle Scholar
  42. Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128PubMedGoogle Scholar
  43. Gilichinsky D, Wilson G, Friedmann E, McKay C, Sletten R, Rivkina E, Vishnivetskaya T, Erokhina L, Ivanushkina N, Kochkina G (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311PubMedGoogle Scholar
  44. Hansen CJ, Esposito L, Stewart AIF, Colwell J, Hendrix A, Pryor W, Shemansky D, West R (2006) Enceladus’ water vapor plume. Science 311:1422–1425PubMedGoogle Scholar
  45. Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM, Ming DW, Catling DC, Clark BC, Boynton WV, Hoffman J, DeFlores LP, Gospodinova K, Kapit J, Smith PH (2009) Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325:64–67PubMedGoogle Scholar
  46. Hinsa-Leasure SM, Bhavaraju L, Rodrigues JLM, Bakermans C, Gilichinsky DA, Tiedje JM (2010) Characterization of a bacterial community from a Northeast Siberian seacoast permafrost sample. FEMS Microbiol Ecol 74:103–113PubMedGoogle Scholar
  47. Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–350PubMedGoogle Scholar
  48. Junge K, Krembs C, Deming J, Stierle A, Eicken H (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann Glaciol 33:304–310Google Scholar
  49. Junge K, Imhoff F, Staley T, Deming W (2002) Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol 43:315–328PubMedGoogle Scholar
  50. Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20 °C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557PubMedGoogle Scholar
  51. Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to −20 °C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429PubMedGoogle Scholar
  52. Katayama T, Tanaka M, Moriizumi J, Nakamura T, Brouchkov A, Douglas TA, Fukuda M, Tomita F, Asano K (2007) Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl Environ Microbiol 73:2360–2363PubMedGoogle Scholar
  53. Keppler F, Vigano I, McLeod A, Ott U, Fruchtl M, Rockmann T (2012) Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature 486:93–96PubMedGoogle Scholar
  54. Kerr RA (2011) Enceladus now looks wet, so it may be ALIVE! Science 332:1259PubMedGoogle Scholar
  55. Kivelson MG, Khurana KK, Russell CT, Volwerk M, Walker RJ, Zimmer C (2000) Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289:1340–1343PubMedGoogle Scholar
  56. Kraal ER, van Dijk M, Postma G, Kleinhans MG (2008) Martian stepped-delta formation by rapid water release. Nature 451:973–976PubMedGoogle Scholar
  57. Lacelle D, Radtke K, Clark ID, Fisher D, Lauriol B, Utting N, Whyte LG (2011) Geomicrobiology and occluded O2–CO2–Ar gas analyses provide evidence of microbial respiration in ancient terrestrial ground ice. Earth Planet Sci Lett 306:46–54Google Scholar
  58. Lauro FM, DeMaere MZ, Yau S, Brown MV, Ng C, Wilkins D, Raftery MJ, Gibson JAE, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R (2011) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5:879–895PubMedGoogle Scholar
  59. Lay C-Y, Mykytczuk N, Niederberger T, Martineau C, Greer C, Whyte L (2012) Microbial diversity and activity in hypersaline high Arctic spring channels. Extremophiles 16:177–191PubMedGoogle Scholar
  60. Lefevre F, Forget F (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460:720–723PubMedGoogle Scholar
  61. Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–371PubMedGoogle Scholar
  62. Mader HM, Pettitt ME, Wadham JL, Wolff EW, Parkes RJ (2006) Subsurface ice as a microbial habitat. Geology 34:169–172Google Scholar
  63. Malin MC, Edgett KS, Posiolova LV, McColley SM, Dobrea EZN (2006) Present-day impact cratering rate and contemporary gully activity on Mars. Science 314:1573–1577PubMedGoogle Scholar
  64. Marinova M, McKay C, Heldmann J, Davila A, Andersen D, Jackson W, Lacelle D, Paulson G, Pollard W, Zacny K (2011) Dry soils: the highlands of the Antarctic Dry Valleys and the defining environmental conditions. EPSC-DPS Joint Meeting, Nantes, France, EPSC AbstractsGoogle Scholar
  65. Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72PubMedGoogle Scholar
  66. McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC (2011) Seasonal flows on warm Martian slopes. Science 333:740–743PubMedGoogle Scholar
  67. McKay CP (2009) Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica. Antarct Sci 21:89–94Google Scholar
  68. Mikucki JA, Priscu JC (2007) Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 73:4029–4039PubMedGoogle Scholar
  69. Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324:397–400PubMedGoogle Scholar
  70. Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818PubMedGoogle Scholar
  71. Miteva V, Sowers T, Brenchley J (2007) Production of N2O by ammonia oxidizing bacteria at subfreezing temperatures as a model for assessing the N2O anomalies in the Vostok ice core. Geomicrobiol J 24:451–459Google Scholar
  72. Miteva V, Teacher C, Sowers T, Brenchley J (2009) Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ Microbiol 11:640–656PubMedGoogle Scholar
  73. Mock T, Junge K (2007) Psychrophilic diatoms: mechanisms for survival in freeze-thaw cycles. In: Seckbach J (ed) Extremophilic algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 345–364Google Scholar
  74. Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microbiol 7:605–619PubMedGoogle Scholar
  75. Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, DiSanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041–1045PubMedGoogle Scholar
  76. Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE, Grant JA, Bibring JP, Poulet F, Bishop J, Dobrea EN, Roach L, Seelos F, Arvidson RE, Wiseman S, Green R, Hash C, Humm D, Malaret E, McGovern JA, Seelos K, Clancy T, Clark R, Marais DD, Izenberg N, Knudson A, Langevin Y, Martin T, McGuire P, Morris R, Robinson M, Roush T, Smith M, Swayze G, Taylor H, Titus T, Wolff M (2008) Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454:305–309PubMedGoogle Scholar
  77. Mykytczuk NCS, Trevors JT, Foote SJ, Leduc LG, Ferroni GD, Twine SM (2011) Proteomic insights into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains. Antonie van Leeuwenhoek 100:259–277PubMedGoogle Scholar
  78. Mykytczuk NC, Wilhelm RC, Whyte LG (2012) Planococcus halocryophilus sp. nov., an extreme sub-zero species from high Arctic permafrost. Int J Syst Evol Microbiol 62(8):1937–1944PubMedGoogle Scholar
  79. Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at −15° C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. doi: 10.1038/ismej.2013.8 PubMedGoogle Scholar
  80. Naganuma T, Hua P, Okamoto T, Ban S, Imura S, Kanda H (2005) Depth distribution of euryhaline halophilic bacteria in Suribati Ike, a meromictic lake in East Antarctica. Polar Biol 28:964–970Google Scholar
  81. Ng C, DeMaere MZ, Williams TJ, Lauro FM, Raftery M, Gibson JAE, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R (2010) Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME J 4:1002–1019PubMedGoogle Scholar
  82. Niederberger TD, Perreault NN, Lawrence JR, Nadeau JL, Mielke RE, Greer CW, Andersen DT, Whyte LG (2009) Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian High Arctic. Environ Microbiol 11:616–629PubMedGoogle Scholar
  83. Niederberger TD, Perreault NN, Tille S, Lollar BS, Lacrampe-Couloume G, Andersen D, Greer CW, Pollard W, Whyte LG (2010) Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J 4:1326–1339PubMedGoogle Scholar
  84. Osterloo MM, Anderson FS, Hamilton VE, Hynek BM (2010) Geologic context of proposed chloride-bearing materials on Mars. J Geophys Res 115:E10012Google Scholar
  85. Pappalardo RT, Belton MJS, Breneman HH, Carr MH, Chapman CR, Collins GC, Denk T, Fagents S, Geissler PE, Giese B, Greeley R, Greenberg R, Head JW, Helfenstein P, Hoppa G, Kadel SD, Klaasen KP, Klemaszewski JE, Magee K, McEwen AS, Moore JM, Moore WB, Neukum G, Phillips CB, Prockter LM, Schubert G, Senske DA, Sullivan RJ, Tufts BR, Turtle EP, Wagner R, Williams KK (1999) Does Europa have a subsurface ocean? Evaluation of the geological evidence. J Geophys Res 104:24015–24055Google Scholar
  86. Perreault NN, Andersen DT, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian High Arctic. Appl Environ Microbiol 73:1532–1543PubMedGoogle Scholar
  87. Perreault NN, Greer CW, Andersen DT, Tille S, Lacrampe-Couloume G, Lollar BS, Whyte LG (2008) Heterotrophic and autotrophic microbial populations in cold perennial springs of the high Arctic. Appl Environ Microbiol 74:6898–6907PubMedGoogle Scholar
  88. Piette F, D’Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G (2011) Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77:3881–3883PubMedGoogle Scholar
  89. Pollard W, Haltigin T, Whyte L, Niederberger T, Andersen D, Omelon C, Nadeau J, Ecclestone M, Lebeuf M (2009) Overview of analogue science activities at the McGill Arctic Research Station, Axel Heiberg Island, Canadian High Arctic. Planet Sp Sci 57:646–659Google Scholar
  90. Postberg F, Schmidt J, Hillier J, Kempf S, Srama R (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622PubMedGoogle Scholar
  91. Potter EG, Bebout BM, Kelley CA (2009) Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system. Astrobiology 9:383–390PubMedGoogle Scholar
  92. Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci U S A 97:1247–1251PubMedGoogle Scholar
  93. Price PB (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231PubMedGoogle Scholar
  94. Price PB (2012) Low-temperature limits of microbial growth and metabolism. In: Miller RV, Whyte LG (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 243–264Google Scholar
  95. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A 101:4631–4636PubMedGoogle Scholar
  96. Qiu Y, Vishnivetskaya TA, Lubman DM (2009) Proteomic insights: cryoadaptation of permafrost bacteria. In: Margesin R (ed) Permafrost soils. Springer, Berlin, pp 169–181Google Scholar
  97. Reigstad LJ, Jorgensen SL, Lauritzen SE, Schleper C, Urich T (2011) Sulfur-oxidizing chemolithotrophic proteobacteria dominate the microbiota in High Arctic thermal springs on Svalbard. Astrobiology 11:665–678PubMedGoogle Scholar
  98. Rennó NO, Bos BJ, Catling D, Clark BC, Drube L, Fisher D, Goetz W, Hviid SF, Keller HU, Kok JF, Kounaves SP, Leer K, Lemmon M, Madsen MB, Markiewicz WJ, Marshall J, McKay C, Mehta M, Smith M, Zorzano MP, Smith PH, Stoker C, Young SMM (2009) Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J Geophys Res 114:E00E03Google Scholar
  99. Riley M, Staley J, Danchin A, Wang TZ, Brettin T, Hauser L, Land M, Thompson L (2008) Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics 9:210PubMedGoogle Scholar
  100. Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233PubMedGoogle Scholar
  101. Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Sp Res 33:1215–1221Google Scholar
  102. Rohde RA, Price PB (2007) Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc Natl Acad Sci U S A 104:16592–16597PubMedGoogle Scholar
  103. Rohde RA, Price PB, Bay RC, Bramall NE (2008) In situ microbial metabolism as a cause of gas anomalies in ice. Proc Natl Acad Sci U S A 105:8667–8672PubMedGoogle Scholar
  104. Rossi AP, Neukum G, Pondrelli M, van Gasselt S, Zegers T, Hauber E, Chicarro A, Foing B (2008) Large-scale spring deposits on Mars? J Geophys Res 113:E08016Google Scholar
  105. Samarkin VA, Madigan MT, Bowles MW, Casciotti KL, Priscu JC, McKay CP, Joye SB (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geosci 3:341–344Google Scholar
  106. Sattler B, Storrie-Lombardi MC (2010) L.I.F.E. in Antarctic lakes. In: Bej AK, Aislabie J, Atlas RM (eds) Polar microbiology: the ecology, biodiversity, and bioremediation potential of micro­organisms in extremely cold environments. CRC Press, Boca Raton, pp 95–114Google Scholar
  107. Sattley WM, Madigan MT (2007) Cold-active acetogenic bacteria from surficial sediments of perennially ice-covered Lake Fryxell, Antarctica. FEMS Microbiol Lett 272:48–54PubMedGoogle Scholar
  108. Schmidt BE, Blankenship DD, Patterson GW, Schenk PM (2011) Active formation of ‘chaos terrain’ over shallow subsurface water on Europa. Nature 479:502–505PubMedGoogle Scholar
  109. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526PubMedGoogle Scholar
  110. Singleton AC, Osinski GR, Samson C, Williamson M-C, Holladay S (2010) Electromagnetic characterization of polar ice-wedge polygons: implications for periglacial studies on Mars and Earth. Planet Sp Sci 58:472–481Google Scholar
  111. Skidmore M, Jungblut A, Urschel M, Junge K (2012) Cryospheric environments in polar regions (glaciers and ice sheets, sea ice, and ice shelves). In: Miller RV, Whyte LG (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 218–239Google Scholar
  112. Smith J, Tow L, Stafford W, Cary C, Cowan D (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421PubMedGoogle Scholar
  113. Smith PH, Tamppari LK, Arvidson RE, Bass D, Blaney D, Boynton WV, Carswell A, Catling DC, Clark BC, Duck T, DeJong E, Fisher D, Goetz W, Gunnlaugsson HP, Hecht MH, Hipkin V, Hoffman J, Hviid SF, Keller HU, Kounaves SP, Lange CF, Lemmon MT, Madsen MB, Markiewicz WJ, Marshall J, McKay CP, Mellon MT, Ming DW, Morris RV, Pike WT, Renno N, Staufer U, Stoker C, Taylor P, Whiteway JA, Zent AP (2009) H2O at the Phoenix landing site. Science 325:58–61PubMedGoogle Scholar
  114. Soare R, Conway S, Pearce G, Costard F (2012) Ice-enriched loess and the formation of periglacial terrain in Mid-Utopia Planitia, Mars. In: 43rd Lunar and Planetary Science conference, 19–23 March, The Woodlands, Texas. LPI Contribution No. 1659, id. 1311Google Scholar
  115. Sowers T (2001) N2O record spanning the penultimate deglaciation from the Vostok ice core. J Geophys Res D Atmos 106:31903–31914Google Scholar
  116. Steven B, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267PubMedGoogle Scholar
  117. Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007a) Characterization of the microbial diversity in a permafrost sample from the Canadian High Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523PubMedGoogle Scholar
  118. Steven B, Niederberger TD, Bottos EM, Dyen MR, Whyte LG (2007b) Development of a sensitive radiorespiration method for detecting microbial activity at subzero temperatures. J Microbiol Method 71:275–280Google Scholar
  119. Steven B, Pollard WH, Greer CW, Whyte LG (2008) Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian High Arctic. Environ Microbiol 10:3388–3403PubMedGoogle Scholar
  120. Steven B, Niederberger TD, Whyte LG (2009) Bacterial and archaeal diversity in permafrost soils. In: Margesin R (ed) Permafrost soils. Springer, Berlin, pp 59–72Google Scholar
  121. Stoker CR, Zent A, Catling DC, Douglas S, Marshall JR, Archer D Jr, Clark B, Kounaves SP, Lemmon MT, Quinn R, Renno N, Smith PH, Young SMM (2010) Habitability of the Phoenix landing site. J Geophys Res 115:E00E20Google Scholar
  122. Stomeo F, Makhalanyane TP, Valverde A, Pointing SB, Stevens MI, Cary CS, Tuffin MI, Cowan DA (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 82(2):326–340PubMedGoogle Scholar
  123. Takacs-Vesbach C, Zeglin L, Barrett J, Goseff MN, Priscu JC (2010). Factors promoting microbial diversity in the McMurdo Dry Valleys. In: Doran P, Lyons WB, McKnight DM (eds) Antarctica. Life in Antarctic deserts and other cold dry environments: astrobiological analogs. Astrobiology series. Cambridge University Press, Cambridge, pp 221–257Google Scholar
  124. Tung HC, Price PB, Bramall NE, Vrdoljak G (2006) Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice. Astrobiology 6:69–86PubMedGoogle Scholar
  125. Ulrich M, Wagner D, Hauber E, de Vera JP, Schirrmeister L (2012) Habitable periglacial landscapes in Martian mid-latitudes. Icarus 219:345–357Google Scholar
  126. Wilhelm RC, Niederberger TD, Greer C, Whyte LG (2011) Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can J Microbiol 57:303–315PubMedGoogle Scholar
  127. Wilhelm RC, Radtke KJ, Mykytczuk NCS, Greer CW, Whyte LG (2012) Life at the wedge: the activity and diversity of Arctic ice wedge microbial communities. Astrobiology 12:347–360PubMedGoogle Scholar
  128. Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147PubMedGoogle Scholar
  129. Williams TJ, Lauro FM, Ertan H, Burg DW, Poljak A, Raftery MJ, Cavicchioli R (2011) Defining the response of a microorganism to temperatures that span its complete growth temperature range (−2 °C to 28 °C) using multiplex quantitative proteomics. Environ Microbiol 13:2186–2203PubMedGoogle Scholar
  130. Wright SW, Burton HR (1981) The biology of Antarctic saline lakes. Hydrobiologia 81–82:319–338Google Scholar
  131. Yergeau E, Schoondermark-Stolk SA, Brodie EL, Dejean S, DeSantis TZ, Goncalves O, Piceno YM, Andersen GL, Kowalchuk GA (2008) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351PubMedGoogle Scholar
  132. Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J 4:1206–1214PubMedGoogle Scholar
  133. Zahnle K, Freedman RS, Catling DC (2011) Is there methane on Mars? Icarus 212:493–503Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jacqueline Goordial
    • 1
    Email author
  • Guillaume Lamarche-Gagnon
    • 1
  • Chih-Ying Lay
    • 1
  • Lyle Whyte
    • 1
  1. 1.Department of Natural Resource SciencesMcGill UniversitySte-Anne-de-BellevueCanada

Personalised recommendations