Thermoalkaliphilic Microbes

  • Vikash KumarEmail author
  • Tulasi Satyanarayana
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 27)


Alkaliphilic and thermophilic microbes are an exciting group of extremophiles, which thrive in environments with both extreme conditions. Thermoalkaliphilic microbes have been isolated from a variety of niches including alkaline and thermobiotic as well as mesobiotic and neutrophilic soils and sediments. Their adaptation to both high pH and elevated temperatures draws attention not only because they are potential sources of industrially important enzymes but also because of their adaptive mechanisms to external environmental conditions, and they could be considered as model organisms for extraterrestrial life. Thermoalkaliphiles neither represent the most thermophilic nor the most alkaliphilic microorganisms but represent thermophilic ones among the alkaliphiles and vice versa. The relevance of recombinant biological approaches in revealing metabolic potential within the communities of extreme ecosystems is undisputable, but in this post-genomics era, the importance of developing innovative isolation and cultivation methods for extremophiles remains an important objective in gaining a widespread picture of their ecological importance and physiology. There is a need to stimulate isolation and characterization of extremophiles by utilizing current knowledge of molecular biology, biochemistry, physiology, and, of course, microbiology.


Thermophilic Bacterium Ramie Fiber Bacillus Halodurans Hyperthermophilic Bacterium Extreme Thermophile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamsen AK, Lindhagen J, Ahring BK (1995) Optimization of extracellular xylanase production by Dictyoglomus sp. B1 in continuous culture. Appl Microbiol Biotechnol 44:327–332Google Scholar
  2. Aguilar A (1996) Extremophile research in the European Union: from fundamental aspects to industrial expectations. FEMS Microbiol Rev 18:89–92Google Scholar
  3. Aguilar A, Ingemansson T, Magniea E (1998) Extremophile microorganisms as cell factories: support from the European Union. Extremophiles 2:367–373PubMedGoogle Scholar
  4. Alain K, Callac N, Guégan M, Lesongeur F, Crassous P, Cambon-Bonavita MA, Querellou J, Prieur D (2009) Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 59:1310–1315PubMedGoogle Scholar
  5. Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262PubMedGoogle Scholar
  6. Anuradha P, Vijayalakshmi K, Prasanna ND, Sridevi K (2007) Production and properties of alkaline xylanases from Bacillus sp. isolated from sugarcane fields. Curr Sci 92:1283–1286Google Scholar
  7. Anwar A, Saleemuddin M (1998) Alkaline proteases: a review. Bioresour Technol 64:175–183Google Scholar
  8. Arahal DR, Márquez MC, Volcani BE, Schleifer KH, Ventosa A (1999) Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int J Syst Bacteriol 49:521–530PubMedGoogle Scholar
  9. Arikan B (2008) Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Bioresour Technol 99:3071–3076PubMedGoogle Scholar
  10. Arun AB, Chen WM, Lai WA, Chou JH, Shen FT, Rekha PD, Young CC (2009) Lutaonella thermophila gen. nov., sp. nov., a moderately thermophilic member of the family Flavobacteriaceae isolated from a coastal hot spring. Int J Syst Evol Microbiol 8:2069–2073Google Scholar
  11. Atanasova N, Petrova P, Ivanova V, Yankov D, Vassileva A, Tonkova A (2008) Isolation of novel alkaliphilic Bacillus strains for cyclodextrin glucanotransferase production. Appl Biochem Biotechnol 149:155–167PubMedGoogle Scholar
  12. Bajaj BK, Singh NP (2010) Production of xylanase from an alkalitolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Appl Biochem Biotechnol 162:1804–1818PubMedGoogle Scholar
  13. Bajpai P, Bajpai PK (1998) Deinking with enzymes: a review. Tappi J 81(12):111–117Google Scholar
  14. Ballschmiter M, Armbrecht M, Ivanova K, Antranikian G, Liebl W (2005) AmyA, an α-amylase with β-cyclodextrin-forming activity, and AmyB from the thermoalkaliphilic organism Anaerobranca gottschalkii: two α-amylases adapted to their different cellular localizations. Appl Environ Microbiol 71:3709–3715PubMedGoogle Scholar
  15. Baross JA (1998) Do the geological and geochemical records of the early Earth support the prediction from global phylogenetic models of a thermophilic. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life? Taylor & Francis, London, pp 3–18Google Scholar
  16. Bataillon M, Nunes Cardinali AP, Duchiron F (1998) Production of xylanases from a newly isolated alkalophilic thermophilic Bacillus sp. Biotechnol Lett 20:1067–1071Google Scholar
  17. Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of polyextremophilic bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst 5:9PubMedGoogle Scholar
  18. Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116Google Scholar
  19. Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85:1735–1750PubMedGoogle Scholar
  20. Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris H-P (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond B 265:1461–1465Google Scholar
  21. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61PubMedGoogle Scholar
  22. Cavicchioli R, Thomas T (2000) Extremophiles. In: Encyclopedia of microbiology, vol 2, 2nd edn. Academic, London, pp 317–337Google Scholar
  23. Collins T, Gerday C, Feller G (2005) Xylanase, xylanase families and extremophilic xylanase. FEMS Microbiol Rev 29:3–23PubMedGoogle Scholar
  24. Dahlberg L, Holst O, Kristjansson JK (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl Microbiol Biotechnol 40:63–68Google Scholar
  25. Dastager GS, Agasar D, Pandey A (2009) Production and partial purification of α-amylase from a novel isolate Streptomyces gulbargensis. J Ind Microbiol Biotechnol 36:189–194Google Scholar
  26. Dhillon A, Gupta JK, Khanna S (2000) Enhanced production, purification and characterization of a novel cellulase poor thermostable, alkali-tolerant xylanase from Bacillus circulans AB 16. Process Biochem 35:849–856Google Scholar
  27. Dirmeier R, Keller M, Hafenbradl D, Braun FJ, Rachel R, Burggraf S, Stetter KO (1998) Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2:109–114PubMedGoogle Scholar
  28. Duarte MCT, Portugal EP, Ponezi AN, Bim MA, Tagliari TT, Franco T (2000) Production and purification of alkaline xylanases. Bioresour Technol 68:49–53Google Scholar
  29. Engle M, Li Y, Woese C, Wiegel J (1995) Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov. sp. nov. Int J Syst Bacteriol 45:454–461PubMedGoogle Scholar
  30. Engle M, Li Y, Rainey F, DeBlois S, Mai V, Reichert A, Mayer F, Messmer P, Wiegel J (1996) Thermobrachium celere, gen. nov., sp. nov., a fast growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int J Syst Bacteriol 46:1025–1033PubMedGoogle Scholar
  31. Fardeau ML, Barsotti V, Cayol JL, Guasco S, Michotey V, Joseph M, Bonin P, Ollivier B (2010) Caldinitratiruptor microaerophilus, gen. nov., sp. nov. isolated from a French hot spring (Chaudes-Aigues, Massif Central): a novel cultivated facultative microaerophilic anaerobic thermophile pertaining to the symbiobacterium branch within the Firmicutes. Extremophiles 14:241–247PubMedGoogle Scholar
  32. Ferguson SA, Keis S, Cook GM (2006) Biochemical and molecular characterization of a Na+-translocating F1F0-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J Bacteriol 188:5045–5054PubMedGoogle Scholar
  33. Fujinami S, Sato T, Trimmer JS, Spiller BW, Clapham DE, Krulwich TA, Kawagishi I, Ito M (2007) The voltage-gated Na+ channel NaVBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. Microbiology 153:4027–4038PubMedGoogle Scholar
  34. Fujisawa M, Fackelmayer O, Liu J, Krulwich TA, Hicks DB (2010) The ATP synthase α-subunit of extreme alkaliphiles is a distinct variant. J Biol Chem 285:32105–32115PubMedGoogle Scholar
  35. Fukumori F, Kudo T, Horikoshi K (1985) Purification and properties of a cellulase from alkalophilic Bacillus sp. no. 1139. J Gen Microbiol 131:3339–3345Google Scholar
  36. Futterer O, Angelov A, Liesegang A, Gottschalk G, Schleper C, Chepers D, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci U S A 101:9091–9096PubMedGoogle Scholar
  37. Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270Google Scholar
  38. Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32PubMedGoogle Scholar
  39. Haney PJ, Badger JH, Buldak GL, Reich CI, Woese CR, Olsen GJ (1999) Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci U S A 96:3578–3583PubMedGoogle Scholar
  40. Hashim SO, Delgado OD, Martínez MA, Hatti-Kaul R, Mulaa FJ, Mattiasson B (2005) Alkaline active maltohexaose-forming α-amylase from Bacillus halodurans LBK 34. Enzyme Microb Technol 36:139–146Google Scholar
  41. Hicks DB, Liu J, Fujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 1797:1362–1377PubMedGoogle Scholar
  42. Hirata Y, Ito H, Furuta T, Ikuta K, Sakudo A (2010) Degradation and destabilization of abnormal prion protein using alkaline detergents and proteases. Int J Mol Med 25:267–270PubMedGoogle Scholar
  43. Horikoshi K (1991) Microorganisms in alkaline environments. Kodansha-VCH, TokyoGoogle Scholar
  44. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedGoogle Scholar
  45. Horikoshi K (2011) General physiology of alkaliphiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, TokyoGoogle Scholar
  46. Huber R, Rossnagel P, Woese CR, Rachel R, Langworthy TA, Stetter KO (1996) Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst Appl Microbiol 19:40–49PubMedGoogle Scholar
  47. Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2:185–190PubMedGoogle Scholar
  48. Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers B, Zvi L, Uematsu K, Krulwich TA (2004a) MotPS is the stator-force generator for motility of alkaliphilic Bacillus and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 53:1035–1049PubMedGoogle Scholar
  49. Ito M, Xu H, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA (2004b) The voltage-gated Na  +  channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci U S A 101:10566–10571PubMedGoogle Scholar
  50. Ivey DM, Krulwich TA (1992) Two unrelated alkaliphilic Bacillus species possess identical deviations in sequence from those of other prokaryotes in regions of F0 proposed to be involved in proton translocation through the ATP synthase. Res Microbiol 143:467–470PubMedGoogle Scholar
  51. Izydorczyk MS, Dexter JE (2008) Barley β-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products – a review. Food Res Int 41:850–868Google Scholar
  52. Javaux EJ (2006) Extreme life on Earth – past, present and possibly beyond. Res Microbiol 157:37–48PubMedGoogle Scholar
  53. Johnvesly B, Naik GR (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochem 37:139–144Google Scholar
  54. Junge K, Imhoff F, Staley T, Deming W (2002) Phylogenetic diversity of numerically important Arctic sea-ice Bacteria cultured at subzero temperature. Microb Ecol 43:315–328PubMedGoogle Scholar
  55. Kandler O (1998) The early diversification of life and the origin of the three domains: a proposal. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life? Taylor & Francis, London, pp 19–31Google Scholar
  56. Keller M, Braun FJ, Dirmeier R, Hafenbradl D, Burggraf S, Rachel R, Stetter K (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395PubMedGoogle Scholar
  57. Kevbrin VV, Romanek CS, Wiegel J (2004) Alkali-thermophiles: a double challenge from extreme environments. In: Seckbach J (ed) Origins. Kluwer Academic, Dordrecht, pp 395–412Google Scholar
  58. Khelifi N, Ben Romdhane E, Hedi A, Postec A, Fardeau ML, Hamdi M, Tholozan JL, Ollivier B, Hirschler-Réa A (2010) Characterization of Microaerobacter geothermalis gen. nov., sp. nov., a novel microaerophilic, nitrate- and nitrite-reducing thermophilic bacterium isolated from a terrestrial hot spring in Tunisia. Extremophiles 14:297–304PubMedGoogle Scholar
  59. Klippel B, Antranikian G (2011) Lignocellulose converting enzymes from thermophiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Tokyo, pp 444–466Google Scholar
  60. Ko CH, Lin ZP, Tu J, Tsai CH, Liu CC, Chen HT, Wang TP (2010) Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Int Biodeterior Biodegr 64:13–19Google Scholar
  61. Konings WN, Albers SV, Koning S, Driessen AJ (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie van Leeuwenhoek 81:61–72PubMedGoogle Scholar
  62. Kristjansson JK (ed) (1992) Thermophilic bacteria. CRC Press, Boca RatonGoogle Scholar
  63. Krulwich TA, Federbush JG, Guffanti AA (1985) Presence of a nonmetabolizable solute that is translocated with Na+ enhances Na+-dependent pH homeostasis in an alkalophilic Bacillus. J Biol Chem 260:4055–4058PubMedGoogle Scholar
  64. Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260PubMedGoogle Scholar
  65. Kumar V, Satyanarayana T (2011) Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol Lett 33:2279–2285PubMedGoogle Scholar
  66. Leigh JA, Wolfe RS (1983) Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch Microbiol 129:275–280Google Scholar
  67. Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634PubMedGoogle Scholar
  68. Leveque E, Janecek S, Haye B, Belarbi A (2000) Thermophilic archaeal amylolytic enzymes: catalytic mechanism, substrate specificity and stability. Enzyme Microbiol Technol 26:3–14Google Scholar
  69. Li X-Z, Poole K (1999) Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. Can J Microbiol 45:18–22PubMedGoogle Scholar
  70. Litchfield CD (1998) Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit Planet Sci 33:813–819PubMedGoogle Scholar
  71. Liu J, Fujisawa M, Hicks DB, Krulwich TA (2009) Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an alkaliphilic Bacillus. J Biol Chem 284:8714–8725PubMedGoogle Scholar
  72. MacElroy M (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75Google Scholar
  73. Malhotra R, Noorwez SM, Satyanarayana T (2000) Production and partial characterization of thermostable and calcium-independent α- amylase of an extreme thermophile Bacillus thermoleovorans NP54. Lett Appl Microbiol 30:378–384Google Scholar
  74. Martins RF, Hatti-Kaul R (2002) A new cyclodextrin glycosyltransferase from an alkaliphilic Bacillus agaradhaerens isolate: purification and characterization. Enzyme Microb Technol 30:116–124Google Scholar
  75. Matsuzawa M, Kawano M, Nakamura N, Horikoshi K (1975) An improved method for the production of Schardinger β-dextrin on an industrial scale by cyclodextrin glycosyltransferase of an alkalophilic Bacillus sp. Starch 27:410–413Google Scholar
  76. McCliment EA, Voglesonger KM, O’Day PA, Dunn EE, Holloway JR, Cary SC (2006) Colonization of nascent, deep-sea hydrothermal vents by a novel archaeal and nanoarchaeal assemblage. Environ Microbiol 8:114–125PubMedGoogle Scholar
  77. Mesbah NM, Wiegel J (2008) Life at extreme limits – the anaerobic halophilic alkalithermophiles. Ann N Y Acad Sci 1125:44–57PubMedGoogle Scholar
  78. Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082PubMedGoogle Scholar
  79. Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J (2007) Natranaerobius thermophilus gen. nov. sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512PubMedGoogle Scholar
  80. Mesbah N, Cook G, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+(K+)/H+ antiporters. Mol Microbiol 74:270–281PubMedGoogle Scholar
  81. Miller SL, Lazcano A (1998) Facing up to chemical realities: life did not begin at the growth temperature of hyperthermophiles. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life? Taylor & Francis, London, pp 127–133Google Scholar
  82. Mori K, Yamaguchi K, Sakiyama Y, Urabe T, Suzuki KI (2009) Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiseria phyl. nov., originally called candidate phylum OP5 and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov. Int J Syst Evol Microbiol 59:2894–2898PubMedGoogle Scholar
  83. Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremophiles, extremotrophs and broadband pigmentations strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87PubMedGoogle Scholar
  84. Murakami S, Nishimoto H, Toyama Y, Shimamoto E, Takenaka S, Kaulpiboon J, Prousoontorn M, Limpaseni T, Pongsawasdi P, Aoki K (2007) Purification and characterization of two alkaline, thermotolerant alpha-amylases from Bacillus halodurans 38C-2-1 and expression of the cloned gene in Escherichia coli. Biosci Biotechnol Biochem 71:2393–2401PubMedGoogle Scholar
  85. Nagar S, Gupta VK, Kumar D, Kumar L, Kuhad RC (2010) Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J Ind Microbiol Biotechnol 37:71–83PubMedGoogle Scholar
  86. Nagy ML, Perez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonorian Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245PubMedGoogle Scholar
  87. Nath D, Rao M (2000) pH dependent conformational and structural changes of xylanase from an alkalophilic thermophilic Bacillus sp (NCIM 59). Enzyme Microb Technol 28:397–403Google Scholar
  88. Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761Google Scholar
  89. Ningthoujam DS, Kshetri P, Sanasam S, Nimaichand S (2009) Screening, identification of best producers and optimization of extracellular proteases from moderately halophilic alkalithermotolerant indigenous actinomycetes. World Appl Sci J 7:907–916Google Scholar
  90. Ogg C, Patel BK (2009) Sporolituus thermophilus gen. nov., sp. nov., a citrate-fermenting, thermophilic, anaerobic bacterium from geothermal waters of the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59:2848–2853PubMedGoogle Scholar
  91. Oshima T, Moriya T (2008) A preliminary analysis of microbial and biochemical properties of high-temperature compost. Ann N Y Acad Sci 1125:338–344PubMedGoogle Scholar
  92. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88PubMedGoogle Scholar
  93. Panda SK, Jyoti V, Bhadra B, Nayak KC, Shivaji S, Rainey FA, Das SK (2009) Thiomonas bhubaneswarensis sp. nov., a novel obligately mixotrophic, moderately thermophilic, thiosulfate oxidizing bacterium. Int J Syst Evol Microbiol 59:2171–2175PubMedGoogle Scholar
  94. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152PubMedGoogle Scholar
  95. Pazarlioglu NK, Sariisik M, Telefoncu A (2005) Treating denim fabrics with immobilized commercial cellulases. Process Biochem 40:767–771Google Scholar
  96. Pikuta E, Lysenko A, Chuvilskaya N, Mendorock U, Hippe H, Suzina N, Nikitin D, Osipov G, Laurinavichius K (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117PubMedGoogle Scholar
  97. Poli A, Romano I, Cordella P, Orlando P, Nicolaus B, Ceschi Berrini C (2009) Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles 13:867–874PubMedGoogle Scholar
  98. Preiss L, Yildiz Ö, Hicks D, Krulwich TA, Meier T (2010) A new type of proton coordination in an F1F0-ATP synthase rotor ring. PLoS Biol 8:e1000443PubMedGoogle Scholar
  99. Prevost S, Andre S, Remize F (2010) PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage. Curr Microbiol 61:525–533PubMedGoogle Scholar
  100. Prieur D, Erauso G, Jeanthon C (1995) Hyperthermophilic life at deep-sea hydrothermal vents. Planet Space Sci 43:115–122PubMedGoogle Scholar
  101. Rai SK, Roy JK, Mukherjee AK (2010) Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Appl Microbiol Biotechnol 85:1437–1450PubMedGoogle Scholar
  102. Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, Daniel RM, Stackebrandt E, Morgan HW (1994) Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov.: An obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266PubMedGoogle Scholar
  103. Rani DS, Nand K (2000) Production of thermostable cellulase-free xylanase by Clostridium absonum CFR-702. Process Biochem 36:355–362Google Scholar
  104. Rao CS, Sathish T, Ravichandra P, Prakasham RS (2009) Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem 44:262–268Google Scholar
  105. Romano I, Dipasquale L, Orlando P, Lama L, d’Ippolito G, Pascual J, Gambacorta A (2010) Thermoanaerobacterium thermostercus sp. nov., a new anaerobic thermophilic hydrogen-producing bacterium from buffalo-dung. Extremophiles 14:233–240PubMedGoogle Scholar
  106. Sanghi A, Garg N, Kuhar K, Kuhad RC, Gupta VK (2009) Enhanced production of cellulase-free xylanase by alkalophilic Bacillus subtilis ASH and its application in biobleaching of kraft pulp. BioResources 4:1109–1129Google Scholar
  107. Satyanarayana T, Sharma A, Mehta D, Puri AK, Kumar V, Nisha M, Joshi S (2012) Biotechnological applications of biocatalysts from the firmicutes Bacillus and Geobacillus species. In: Satyanarayana T, Johri BN, Anil P (eds) Microorganisms in sustainable agriculture and biotechnology, part 2. Springer, Dordrecht, pp 343–379Google Scholar
  108. Saxena RK, Dutt K, Agarwal L, Nayyar P (2007) A highly thermostable and alkaline amylase from a Bacillus sp. PN5. Bioresour Technol 98:260–265PubMedGoogle Scholar
  109. Schmid G (1989) Cyclodextrin glucanotransferase production: yield enhancement by overexpression of cloned genes. Trends Biotechnol 7:244–248Google Scholar
  110. Seifzadeh S, Sajedi RH, Sariri R (2008) Isolation and characterization of thermophilic alkaline proteases resistant to sodium dodecyl sulfate and ethylene diamine tetraacetic acid from Bacillus sp. GUS1. Iran J Biotechnol 6:214–221Google Scholar
  111. Shanmughapriya S, Kiran GS, Selvin J, Gandhimathi R, Baskar TB, Manilal A, Sujith S (2009) Optimization, production, and partial characterization of an alkalophilic amylase produced by sponge associated marine bacterium Halobacterium salinarum MMD047. Biotechnol Bioprocess Eng 14:67–75Google Scholar
  112. Sharma A, Adhikari S, Satyanarayana T (2007) Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J Microbiol Biotechnol 23:483–490Google Scholar
  113. Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K (2009) Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 59:1764–1770PubMedGoogle Scholar
  114. Shock EL (1997) High temperature life without photosynthesis as a model for Mars. J Geophys Res Planets 102:23687–23694Google Scholar
  115. Shock EL, McCollom T, Schulte MD (1998) The emergence of metabolism form within hydrothermal systems. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life? Taylor & Francis, London, pp 59–76Google Scholar
  116. Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16PubMedGoogle Scholar
  117. Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79PubMedGoogle Scholar
  118. Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158Google Scholar
  119. Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99PubMedGoogle Scholar
  120. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954PubMedGoogle Scholar
  121. Terui Y, Otnuma M, Hiraga K, Kawashima E, Oshima T (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem J 388:427–433PubMedGoogle Scholar
  122. Thiemann V, Donges C, Prowe SG, Sterner R, Antranikian G (2004) Characterisation of a thermoalkali-stable cyclodextrin glycosyltransferase from the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. Arch Microbiol 182:226–235PubMedGoogle Scholar
  123. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9–32PubMedGoogle Scholar
  124. Uzawa T, Hamasaki N, Oshima T (1993) Effects of novel polyamines on cell-free polypeptide synthesis catalyzed by Thermus thermophilus HB8 extract. J Biochem 114:478–486PubMedGoogle Scholar
  125. Valladares Juárez AG, Dreyer J, Göpel PK, Koschke N, Frank D, Märkl H, Müller R (2009) Characterisation of a new thermoalkaliphilic bacterium for the production of high-quality hemp fibres, Geobacillus thermoglucosidasius strain PB94A. Appl Microbiol Biotechnol 83:521–527PubMedGoogle Scholar
  126. van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch converting enzymes of the α-amylase family. J Biotechnol 94:137–155PubMedGoogle Scholar
  127. Villar SE, Edwards HG (2006) Raman spectroscopy in astrobiology. Anal Bioanal Chem 384:100–113Google Scholar
  128. Virupakshi K, Kyu KL, Tanticharoen M (2005) Purification and properties of a xylan-binding endoxylanase from alkalophilic Bacillus sp. strain K-1. Appl Environ Microbiol 65:694–697Google Scholar
  129. Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann N Y Acad Sci 1125:1–43PubMedGoogle Scholar
  130. Wang Z, Hicks DB, Guffanti AA, Baldwin K, Krulwich TA (2004) Replacement of amino acid sequence features of a-and c-subunits of ATP synthases of alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5. J Biol Chem 279:26546–26554PubMedGoogle Scholar
  131. Wang CY, Chang CC, Ng CC, Chen TW, Shyu YT (2008) Virgibacillus chiguensis sp. nov., a novel halophilic bacterium isolated from Chigu, a previously commercial saltern located in southern Taiwan. Int J Syst Evol Microbiol 58:341–345PubMedGoogle Scholar
  132. Wang HK, Liu RJ, Lu FP, Qi W, Shao J, Ma HJ (2009) A novel alkaline and low-temperature lipase of Burkholderia cepacia isolated from Bohai in China for detergent formulation. Ann Microbiol 59:105–110Google Scholar
  133. Wiegel J (1992) The obligately anaerobic thermophilic bacteria. In: Kristjansson JK (ed) Thermophilic bacteria. CRC Press, Boca Raton, pp 105–184Google Scholar
  134. Wiegel J (1998) Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2:257–267PubMedGoogle Scholar
  135. Wiegel J, Adams MWW (1998) Thermophiles – the keys to molecular evolution and the origin of life? Taylor & Francis, London, pp 19–31Google Scholar
  136. Wiegel J, Canganella F (2000) Extreme thermophiles. In: Encyclopedia of life sciences. Wiley, Chichester. doi:10.1038/npg.els.0000392Google Scholar
  137. Wiegel J, Kevbrin V (2004) Diversity of aerobic and anaerobic alkalithermophiles. Biochem Soc Trans 32:193–198PubMedGoogle Scholar
  138. Wiegel J, Ljungdahl LG (1996) The importance of thermophilic bacteria in biotechnology. CRC Crit Rev Biotechnol 3:39–107Google Scholar
  139. World Enzymes to 2013-Demand and Sales Forecasts, Market Share, Market Size, Market Leaders (2009).
  140. Xue Y, Zhang X, Zhou C, Zhao Y, Cowan AD, Heaphy S, Grant WD, Jones BE, Ventosa A, Ma Y (2006) Caldalkalibacillus thermarum gen. nov., sp. nov., a novel alkalithermophilic bacterium from a hot spring in China. Int J Syst Evol Microbiol 56:1217–1221PubMedGoogle Scholar
  141. Yang SQ, Yan QJ, Jiang ZQ, Li LT, Tian HM, Wang YZ (2006) High-level of xylanase production by the thermophilic Paecilomyces thermophila J18 on wheat straw in solid-state fermentation. Bioresour Technol 97:1794–1800PubMedGoogle Scholar
  142. Yim DE, Sato HH, Park YH, Park YK (1997) Production of cyclodextrin from starch by cyclodextrin glycosyltransferase from Bacillus firmus and characterization of purified enzyme. J Ind Microbiol Biotechnol 18:402–405Google Scholar
  143. Yip KS, Stillman TJ, Britton KL, Baker PJ, Sedelnikova SE, Engel PC, Pasquo A, Chiaraluce R, Consalvi V, Scandurra R, Rice DW (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3:1147–1158PubMedGoogle Scholar
  144. Yumoto I, Hirota K, Yoshimune K (2011) Environmental distribution and taxonomic diversity of alkaliphiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Tokyo, pp 444–466Google Scholar
  145. Zhang CM, Huang XW, Pan WZ, Zhang J, Wei KB, Klenk HP, Tang SK, Li WJ, Zhang KQ (2011) Anoxybacillus tengchongensis sp. nov. and Anoxybacillus eryuanensis sp. nov., facultatively anaerobic, alkalitolerant bacteria from hot springs. Int J Syst Evol Microbiol 61:118–122PubMedGoogle Scholar
  146. Zhao W, Weber C, Zhang CL, Romanek CS, King GM, Mills G, Sokolova T, Wiegel J (2006) Thermalkalibacillus uzonensis, gen. nov.sp. nov., a novel alkalitolerant aerobic thermophilic bacterium isolated from a hot spring in Uzon Caldera, Kamchatka. Extremophiles 10:337–345PubMedGoogle Scholar
  147. Zhao J, Lan X, Su J, Sun L, Rahman E (2008) Isolation and identification of an alkaliphilic Bacillus flexus XJU-3 and analysis of its alkaline amylase. Wei Sheng Wu Xue Bao 48:750–756PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations