Advertisement

Polyextremophiles and the Constraints for Terrestrial Habitability

  • Mark C. CapeceEmail author
  • Evan Clark
  • Jamal K. Saleh
  • Daniel Halford
  • Nicole Heinl
  • Samuel Hoskins
  • Lynn J. Rothschild
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 27)

Abstract

Life on Earth occupies a multidimensional niche space that has yet to be fully described. The niche space of terrestrial life is knowable, and thus, it guides the search for hypothesized life. Since terrestrial life is constrained by its organic carbon foundation and requirement for water as a solvent, extremes in such environmental parameters as temperature, pH, and pressure will determine the geographic range in which life can survive. Most previous studies have focused on individual environmental variables, but in fact, each niche space occupies all parameters. Thus, to not only understand the limits of life on Earth but also use these constraints as a framework for the identification of potential abodes for life elsewhere necessitates an analysis of multiple environmental parameters simultaneously. After searching the published literature, we have compiled data about mechanisms of survival at individual and multiple extremes in order to model the niche space for terrestrial life. Published data are incomplete and inconsistent for a full analysis of all extremes and their polyextremophilic combinations, so after describing the breadth of the field, we focus on the two best-documented parameters, temperature and pH, to create a two-dimensional niche space model for future analysis. We conclude by pointing out that synthetic biology has the ability to expand the limits for life on Earth and thus increase the chances of overlap between terrestrial and potential extraterrestrial biota.

References

  1. Abe F (2011) High pressures and eukaryotes. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 688–701Google Scholar
  2. Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19:102–108PubMedGoogle Scholar
  3. Abe F, Kato C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453PubMedGoogle Scholar
  4. Adams A (1985) Cryptobiosis in Chironomidae (Diptera) – two decades on. Antenna 8:58–61Google Scholar
  5. Albuquerque L, Simoes C, Nobre MF, Pino NM, Battista JR, Silva MT, Rainey FA, da Costa MS (2005) Trupera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov. FEMS Microbiol Lett 247:161–169PubMedGoogle Scholar
  6. Amend JP, Meyer-Dombard DR, Sheth SN, Zolotova N, Amend AC (2003) Palaeococcus helgesonii sp. nov., a facultatively anaerobic hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy. Arch Microbiol 179:394–401PubMedGoogle Scholar
  7. Amo T, Paje MLF, Inagaki A, Ezaki S, Atomi H, Imanaka T (2002) Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air. Archaea 1:113–121PubMedGoogle Scholar
  8. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the Great Oxidation Event? Science 317:1903–1906PubMedGoogle Scholar
  9. Antunes A, Eder W, Fareleira P, Santos H, Huber R (2003) Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine-seawater interface of the Shaban Deep, Red Sea. Extremophiles 7:29–34PubMedGoogle Scholar
  10. Antunes A, Rainey FA, Wanner G, Taborda M, Pätzold J, Nobre MF, da Costa MS, Huber R (2008a) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:3580–3587PubMedGoogle Scholar
  11. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008b) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220PubMedGoogle Scholar
  12. Aoshima M, Oshima T (1997) Purification and characterization of isocitrate dehydrogenase from a hyperthermophilic archaebacterium, Caldococcus noboribetus. Biochim Biophys Acta 1340:227–234PubMedGoogle Scholar
  13. Aoshima M, Nishibe Y, Hasegawa M, Yamagishi A, Oshima T (1996) Cloning and sequencing of a gene encoding 16S ribosomal RNA from a novel hyperthermophilic archaebacterium NC12. Gene 180:183–187PubMedGoogle Scholar
  14. Arab H, Völker H, Thomm M (2000) Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece. Int J Syst Evol Microbiol 50:2101–2108PubMedGoogle Scholar
  15. Auman AJ, Breezee JL, Gosink JJ, Kämpfer P, Staley JT (2006) Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007PubMedGoogle Scholar
  16. Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171PubMedGoogle Scholar
  17. Banat IM, Marchant R, Rahman TJ (2004) Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int J Syst Evol Micrbiol 54:2197–2201Google Scholar
  18. Barbier G, Godfroy A, Meunier J-R, Quérellou J, Cambon M-A, Lesongeur F, Grimont PAD, Raguénès G (1999) Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise. Int J Syst Evol Microbiol 49:1829–1837Google Scholar
  19. Bartlett DH, Kerman I (2011) Contributions of large-scale DNA sequencing efforts to the understanding of low temperature piezophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 704–718Google Scholar
  20. Bartlett DH, Lauro FM, Eloe EA (2007) Microbial adaptation to high pressure. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 333–348Google Scholar
  21. Bartlett DH, Ferguson G, Valle G (2008) Adaptations of the psychrotolerant piezophile Photobacterium profundum strain SS9. In: Michiels C, Bartlett DH, Aertsen A (eds) High-pressure microbiology. ASM Press, Washington, DC, pp 319–337Google Scholar
  22. Baumann H (1922) Die Anabiose der Tardigraden. Zool Jahrb 45:501–556Google Scholar
  23. Becquerel P (1950) La suspension de la vie au dessous de 1/20 K absolu par demagnetization adiabatique de l’alun de fer dans le vide les plus elévé. C R Hebd Séanc Acad Sci 231:261–263Google Scholar
  24. Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T (1994) Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60:1227–1231PubMedGoogle Scholar
  25. Belkin S, Jannasch HW (1986) A new extremely thermophilic, sulfur-reducing heterotrophic, marine bacterium. Arch Microbiol 141:181–186Google Scholar
  26. Berner R, VandenBrooks J, Ward P (2007) Oxygen and evolution. Science 316:557–558PubMedGoogle Scholar
  27. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21PubMedGoogle Scholar
  28. Blotevogel KH, Fischer U, Mocha M, Jannsen S (1985) Methanobacterium thermoalcaliphilum sp. nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch Microbiol 142:211–217Google Scholar
  29. Blum JS, Burns-Bindi A, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30Google Scholar
  30. Blum JS, Stolz JF, Oren A, Oremland RS (2001) Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch Microbiol 175:208–219PubMedGoogle Scholar
  31. Bonch-Osmolovskaya EA, Slesarev AI, Miroshnichenko ML, Svetlichnaya TP, Alekseev VA (1988) Characterization of Desulfurococcus amylolyticus n. sp. – a novel extremely thermophilic archaebacterium isolated from Kamchatka and Kurils hot springs. Mikrobiologiya 57:94–101Google Scholar
  32. Bonch-Osmolovskaya EA, Miroshnichenko ML, Kostrikina NA, Chernych NA, Zavarzin GA (1990) Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Arch Microbiol 154:556–559Google Scholar
  33. Bonnot F, Houée-Levin C, Favaudon V, Nivière V (2010) Photochemical processes observed during the reaction of superoxide reductase from Desulfoarculus baarsii with superoxide. Biochim Biophys Acta 1804:762–767PubMedGoogle Scholar
  34. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297PubMedGoogle Scholar
  35. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68Google Scholar
  36. Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus sp. nov., represents a new species within the sulfur-reducing archaebacteria. Syst Appl Microbiol 13:24–28Google Scholar
  37. Burggraf S, Olsen GJ, Stetter KO, Woese CR (1992) A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15:352–356PubMedGoogle Scholar
  38. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392PubMedGoogle Scholar
  39. Cadet J, Douki T (2011) Molecular effects of UV and ionizing radiations on DNA. In: Gargaud M, López-García P, Martin H (eds) Origins and evolution of life: an astrobiological perspective. Cambridge University Press, New York, pp 347–358Google Scholar
  40. Canfield DE, Habicht KS, Thamdrup B (2000) The Archaean sulfur cycle and the early history of atmospheric oxygen. Science 288:658–661PubMedGoogle Scholar
  41. Canganella F, Jones WJ, Gambacorta A, Antranikian G (1998) Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Evol Microbiol 48:1181–1185Google Scholar
  42. Carreto L, Moore E, Nobre MF, Wait R, Riley PW, Sharp RJ, da Costa MS (1996) Rubrobacter xyla­nophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Evol Micrbiol 46:460–465Google Scholar
  43. Casadei MA, Mañas P, Niven G, Needs E, Mackey BM (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68:5965–5972PubMedGoogle Scholar
  44. Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:319–343Google Scholar
  45. Chang S-S, Kang D-H (2004) Alicyclobacillus spp. In the fruit juice industry: history, characteristics, and current isolation/detection procedures. Crit Rev Microbiol 30:55–74PubMedGoogle Scholar
  46. Cherry RD, Heyraud M (1982) Evidence of high natural radiation doses in certain mid-water oceanic organisms. Science 218:54–56PubMedGoogle Scholar
  47. Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P, Linton M, Patterson MF, Underwood GJC, Mswaka AY, Hallsworth JE (2010) Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci U S A 107:7835–7840PubMedGoogle Scholar
  48. Chong SC, Liu Y, Cummins M, Valentine DL, Boone DR (2002) Methanogenium marinum sp. nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Antonie van Leeuwenhoek 81:263–270PubMedGoogle Scholar
  49. Chrisostomos S, Patel BKC, Dwivedi PP, Denman SE (1996) Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from the deep-seated nonvolcanically heated waters of an Indian artesian aquifer. Int J Syst Evol Microbiol 46:497–501Google Scholar
  50. Chun J, Bae KS, Moon EY, Jung SO, Lee HK, Kim SJ (2000) Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete. Int J Syst Evol Microbiol 50:1909–1913PubMedGoogle Scholar
  51. Clegg JS (1967) Metabolic studies of cryptobiosis in encysted embryos of Artemia salina. Comp Biochem Physiol 20:801–809Google Scholar
  52. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826PubMedGoogle Scholar
  53. Cook GM, Russell JB, Reichert A, Wiegel J (1996) The intracellular pH of Clostridium paradoxum, an anaerobic, alkaliphilic, and thermophilic bacterium. Appl Environ Microbiol 62:4576–4579PubMedGoogle Scholar
  54. Cox MM, Battista JR (2005) Deinococcus radiodurans − the consummate survivor. Nat Rev Microbiol 3:882–892PubMedGoogle Scholar
  55. Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245PubMedGoogle Scholar
  56. Daly MJ (2011) Deinococcus radiodurans: revising the molecular basis for radiation effects on cells. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 1117–1133Google Scholar
  57. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028PubMedGoogle Scholar
  58. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li S-MW, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS One 5:e92Google Scholar
  59. Daly MJ, Gaidamakova EK, Matrosova VY, Kiang FG, Fukumoto R, Lee D-Y, Wehr NB, Viteri GA, Berlett BS, Levine RL (2010) Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS One 5:e12570PubMedGoogle Scholar
  60. Darland G, Brock TD (1971) Bacillus acidocaldarius sp.nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol 67:9–15Google Scholar
  61. Dartnell L (2011) Biological constraints on habitability. Astron Geophys 52:25–28Google Scholar
  62. Das BK, Roy A, Singh S, Bhattacharya J (2009) Eukaryotes in acidic mine drainage environments: potential applications in bioremediation. Rev Environ Sci Biotechnol 8:257–274Google Scholar
  63. De Rosa M, Gambacorta A, Bu’lock JD (1974) Effects of pH and temperature on the fatty acid composition of Bacillus acidocaldarius. J Bacteriol 117:212–214PubMedGoogle Scholar
  64. De Rosa M, Gambacorta A, Bu’lock JD (1975) Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol 86:156–164PubMedGoogle Scholar
  65. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358PubMedGoogle Scholar
  66. Dirmeier R, Keller M, Hafenbradl D, Braun FJ, Rachel R, Burggraf S, Stetter KO (1998) Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2:109–114PubMedGoogle Scholar
  67. Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci U S A 98:2170–2175PubMedGoogle Scholar
  68. Doemel WN, Brock TD (1970) The upper temperature limit of Cyanidium caldarium. Arch Mikrobiol 72:326–332PubMedGoogle Scholar
  69. Dole M (1965) The natural history of oxygen. J Gen Physiol 49:5–27PubMedGoogle Scholar
  70. Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088PubMedGoogle Scholar
  71. Doronina NV, Trotsenko YA, Tourova TP, Kuznetsov BB, Leisinger T (2000) Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23:210–218PubMedGoogle Scholar
  72. Dose K, Bieger-Dose A, Labusch M, Gill M (1992) Survival in extreme dryness and DNA-single-strand breaks. Adv Space Res 12:221–229PubMedGoogle Scholar
  73. Doyère PLN (1842) Memories sur les tardigrades. Sur le facilité que possedent les tardigrades, les rotifers, les an- guillules des toits et quelques autres of animalcules, de revenir à la vie après été completement déssechées. Ann Sci Nat (Ser 2) 18(5)Google Scholar
  74. Dudley R (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. Exp Biol 201:1043–1050Google Scholar
  75. Duffaud GD, d’Hennezel OB, Peek AS, Reysenbach A-L, Kelly RM (1998) Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation. Syst Appl Microbiol 21:40–49PubMedGoogle Scholar
  76. Eder W, Huber R (2002) New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6:309–318PubMedGoogle Scholar
  77. Edney EB (1977) Water balance in land arthropods, vol 9: Zoophysiology and ecology. Springer, New York, 282 ppGoogle Scholar
  78. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799PubMedGoogle Scholar
  79. Eggermont H, Verschuren D, Fagot M, Rumes B, van Bocxlaer B, Kröpelin S (2008) Aquatic community response in a groundwater-fed desert lake to Holocene desiccation of the Sahara. Quat Sci Rev 27:2411–2425Google Scholar
  80. Ellenby C (1969) Dormancy and survival in nematodes. Symp Soc Exp Biol 23:83–97PubMedGoogle Scholar
  81. Enache M, Itoh T, Kamekura M, Teodosiu G, Dumitru L (2007) Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake. Int J Syst Evol Microbiol 57:393–397PubMedGoogle Scholar
  82. Enami I, Adachi H, Shen J-R (2010) Mechanisms of acido-tolerance and characteristics of photosystems in an acidophilic and thermophilic red alga, Cyanidium caldarium. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, Dordrecht, pp 373–389Google Scholar
  83. Engle M, Li Y, Woese C, Wiegel J (1995) Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int J Syst Evol Bacteriol 45:454–461Google Scholar
  84. Engle M, Li Y, Rainey F, DeBlois S, Mai V, Reichert A, Mayer F, Messner P, Wiegel J (1996) Thermobrachium celere gen. nov., sp. nov., a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int J Syst Bacteriol 46:1025–1033PubMedGoogle Scholar
  85. Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B, Partensky F, Baross JA, Marteinsson V, Barbier G, Pace NR, Prieur D (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349Google Scholar
  86. Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genet Res 15:1336–1343Google Scholar
  87. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedGoogle Scholar
  88. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, Da Costa MS (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation- resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947PubMedGoogle Scholar
  89. Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21:1266–1267PubMedGoogle Scholar
  90. Ferris MJ, Sheehan KB, Kühl M, Cooksey K, Wigglesworth-Cooksey B, Harvey R, Henson JM (2005) Algal species and light microenvironments in a low-pH, geothermal microbial mat community. Appl Environ Microbiol 71:7164–7171PubMedGoogle Scholar
  91. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61Google Scholar
  92. Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst Appl Mircrobiol 8:106–113Google Scholar
  93. Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513PubMedGoogle Scholar
  94. Franzmann PD, Springer N, Ludwig W, de Macario EC, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp.nov. Syst Appl Microbiol 15:573–581Google Scholar
  95. Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, de Macario EC, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072PubMedGoogle Scholar
  96. Fuchs T, Huber H, Burggraf S, Stetter KO (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 19:56–60Google Scholar
  97. Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K (2003) Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327:347–357PubMedGoogle Scholar
  98. Gajardo GM, Beardmore JA (2012) The brine shrimp Artemia: adapted to critical life conditions. Front Physiol 3:1–8Google Scholar
  99. Galhardo RS, Rosenberg SM (2009) Extreme genome repair. Cell 136:998–1000PubMedGoogle Scholar
  100. Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Lett 87:297–308Google Scholar
  101. Garnova ES, Zhilina TN, Tourova TP, Kostrikina NA, Zavarzin GA (2004) Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from a soda lake in the Transbaikal region of Russia. Extremophiles 8:309–316PubMedGoogle Scholar
  102. Giovannoni SJ, Schabtach E, Castenholz RW (1987) Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284Google Scholar
  103. Godfroy A, Meunier J-R, Guezennec J, Lesongeur F, Raguénès G, Rimbault A, Barbier G (1996) Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Int J Syst Bacteriol 46:1113–1119PubMedGoogle Scholar
  104. Godfroy A, Lesongeur F, Raguénès G, Quérellou J, Antoine E, Meunier J-R, Guezennec J, Barbier G (1997) Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626PubMedGoogle Scholar
  105. Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006PubMedGoogle Scholar
  106. González JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL, Yanagibayashi M, Tamaoka J, Kato C (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130PubMedGoogle Scholar
  107. González JM, Sheckells D, Viebahn M, Krupatkina D, Borges KM, Robb FT (1999) Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. Arch Microbiol 172:95–101PubMedGoogle Scholar
  108. Gonzalez O, Oberwinkler T, Mansueto L, Pfeiffer F, Mendoza E, Zimmer R, Oesterhelt D (2010) Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis. PLoS Comput Biol 6:e1000799PubMedGoogle Scholar
  109. Goodchild A, Saunders NFW, Ertan H, Raftery M, Guilhaus M, Curmi PMG, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321PubMedGoogle Scholar
  110. Graham JB, Dudley R, Aguilar NM, Gans C (1995) Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375:117–120Google Scholar
  111. Grogan D, Palm P, Zillig W (1990) Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch Microbiol 154:594–599PubMedGoogle Scholar
  112. Gross M, Lehle K, Jaenicke R, Nierhaus KH (1993) Pressure-induced dissociation of ribosomes and elongation cycle intermediates: stabilizing conditions and identification of the most sensitive functional state. Eur J Biochem 218:463–468PubMedGoogle Scholar
  113. Grote R, Li L, Tamaoka J, Kato C, Horikoshi K, Antranikian G (1999) Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough. Extremophiles 3:55–62PubMedGoogle Scholar
  114. Guidetti R, Jönsson KI (2002) Long-term anhydrobiotic survival in semi-terrestrial micrometazoans. J Zool Lond 257:181–187Google Scholar
  115. Gutierrez CM, Kamekura M, Holmes ML, Dyall-Smith ML, Ventosa A (2002) Taxonomic characterization of Haloferax sp. (“H. alicantei”) strain Aa 2.2: description of Haloferax lucentensis sp. nov. Extremophiles 6:479–483PubMedGoogle Scholar
  116. Gutmann A (2010) New directions: the ethics of synthetic biology and emerging technologies. The Presidential Commission for the Study of Bioethical Issues. http://bioethics.gov/cms/synthetic-biology-report. Accessed 10 June 2012
  117. Hadley NF (1994) Water relations of terrestrial arthropods. Academic, New York, 356 ppGoogle Scholar
  118. Hafenbradl D, Keller M, Dirmeier R, Rachel R, Roßnagel P, Burggraf S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166:308–314PubMedGoogle Scholar
  119. Hallberg KB, Lindström EB (1994) Characterization of Thiobacillus caldus, sp. nov., a moderately thermophilic acidophile. Microbiology 140:3451–3456PubMedGoogle Scholar
  120. Hallberg KB, González-Toril E, Johnson KB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19PubMedGoogle Scholar
  121. He Z-G, Zhong H, Li Y (2004) Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Curr Microbiol 48:159–163PubMedGoogle Scholar
  122. Hensel R, Matussek K, Michalke K, Tacke L, Tindall BJ, Kohlhoff M, Siebers B, Dielenschneider J (1997) Sulfophobococcus zilligii gen. nov., spec. nov. a novel hyperthermophilic archaeum isolated from hot alkaline springs of Iceland. Syst Appl Microbiol 20:102–110Google Scholar
  123. Heyrman J, Balcaen A, De Vos P, Swings J (2002) Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Micrbiol 52:2049–2054Google Scholar
  124. Hezayen FF, Tindall BJ, Steinbüchel A, Rehm BHA (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitrati­reducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280PubMedGoogle Scholar
  125. Holden JF (2009) Extremophiles: hot environments. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 127–146Google Scholar
  126. Hoover RB, Pikuta EV, Bej AK, Marsic D, Whitman WB, Tang J, Krader P (2003) Spirochaeta ameri­cana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53:815–821PubMedGoogle Scholar
  127. Horikoshi K (2011) General physiology of alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 99–118Google Scholar
  128. Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C. Arch Microbiol 149:95–101Google Scholar
  129. Huber R, Woese CR, Langworthy TA, Kristjansson JK, Stetter KO (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Arch Microbiol 154:105–111Google Scholar
  130. Huber G, Drobner E, Huber H, Stetter KO (1992a) Growth by aerobic oxidation of molecular hydrogen in archaea – a metabolic property so far unknown for this domain. Syst Appl Microbiol 15:502–504Google Scholar
  131. Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992b) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351Google Scholar
  132. Huber R, Stohr J, Honenhaus S, Rachel R, Burggraf S, Jannasch HW, Stetter KO (1995) Thermococcus chitonophagus sp. nov., a novel, chitin-degrading hyperthermophilic archaeum from deep-sea hydrothermal environment. Arch Microbiol 164:255–264Google Scholar
  133. Huber H, Jannasch H, Rachel R, Fuchs T, Stetter KO (1997) Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfate reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20:374–380Google Scholar
  134. Huber R, Dyba D, Huber H, Burggraf S, Rachel R (1998a) Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int J Syst Bacteriol 48:31–38PubMedGoogle Scholar
  135. Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998b) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583PubMedGoogle Scholar
  136. Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000a) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50:2093–2100PubMedGoogle Scholar
  137. Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000b) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23:305–314PubMedGoogle Scholar
  138. Imhoff JF, Süling J (1996) The phylogenetic relationship among Ectothiorhodospiraceae: a reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165:106–113PubMedGoogle Scholar
  139. Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121Google Scholar
  140. Inoue K, Itoh T, Ohkuma M, Kogure K (2011) Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. Int J Syst Evol Microbiol 61:942–946PubMedGoogle Scholar
  141. Ishigaki Y, Nakamura Y, Oikawa Y, Yano Y, Kuwabata S, Nakagawa H, Tomosugi N, Takegami T (2012) Observation of live ticks (Haemaphysalis flava) by scanning electron microscopy under high vacuum pressure. PLoS One 7:e32676PubMedGoogle Scholar
  142. Ishikawa H (1935) Hydrolysis of nucleotides by acid. J Biochem 22:385–395Google Scholar
  143. Ishikawa M, Ishizaki S, Yamamoto Y, Yamasato K (2002) Paraliobacillus ryukyuensis gen. nov., sp. nov., a new gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. J Gen Appl Microbiol 48:269–279PubMedGoogle Scholar
  144. Ishikawa M, Nakajima K, Yanagi M, Yamamoto Y, Yamasato K (2003) Marinilactibacillus psychrotolerans gen. nov., sp. nov. a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. Int J Syst Evol Microbiol 53:711–720PubMedGoogle Scholar
  145. Ito M, Fujinami S, Terahara N (2011) Bioenergetics: cell motility and chemotaxis of extreme alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 141–162Google Scholar
  146. Itoh T, Suzuki K-I, Sanchez P, Nakase T (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Evol Microbiol 49:1157–1163Google Scholar
  147. Itoh T, Suzuki K, Nakase T (2002) Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot spring in Japan. Int J Syst Evol Microbiol 52:1097–1104PubMedGoogle Scholar
  148. Jackson TJ, Ramaley RF, Meinschein WG (1973) Thermomicrobium, a new genus of extremely thermophilic bacteria. Int J Syst Evol Microbiol 23:28–36Google Scholar
  149. Jan R-L, Wu J, Chaw S-M, Tsai C-W, Tsen S-D (1999) A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. Int J Syst Evol Microbiol 49:1809–1816Google Scholar
  150. Jeanthon C, L’Haridon S, Reysenbach AL, Vernet M, Messner P, Sleytr UB, Prieur D (1998) Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:913–919PubMedGoogle Scholar
  151. Jeanthon C, L’Haridon S, Reysenbach A-L, Corre E, Vernet M, Messner P, Sleytr UB, Prieur D (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49:583–589PubMedGoogle Scholar
  152. Jochimsen B, Peinemann-Simon S, Völker H, Stüben D, Botz R, Stoffers P, Dando PR, Thomm M (1997) Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos, Greece. Extremophiles 1:67–73PubMedGoogle Scholar
  153. Johnson DB (2006) Biohydrometallurgy and the environment: intimate and important interplay. Hydrometallurgy 83:153–166Google Scholar
  154. Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003a) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851PubMedGoogle Scholar
  155. Jolivet E, Matsunaga F, Ishino Y, Forterre P, Prieur D, Myllykallio H (2003b) Physiological responses of the hyperthermophilic archaeon “Pyrococcus abyssi” to DNA damage caused by ionizing radiation. J Bacteriol 185:3958–3961PubMedGoogle Scholar
  156. Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227PubMedGoogle Scholar
  157. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261Google Scholar
  158. Jönsson KI, Schill RO (2007) Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol B 146:456–460PubMedGoogle Scholar
  159. Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731PubMedGoogle Scholar
  160. Joshi AA, Kanekar PP, Kelkar AS, Sarnaik SS, Shouche Y, Wani A (2007) Moderately halophilic, alkalitolerant Halomonas campisalis MCM B-365. J Basic Microbiol 47:213–221PubMedGoogle Scholar
  161. Kanekar PP, Kanekar SP, Kelkar AS, Dhakephalkar PK (2012) Halophiles – taxonomy, diversity, physiology, and applications. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management: microbes and environment. Springer, Dordrecht, pp 1–34Google Scholar
  162. Kao OH, Edwards MR, Berns DS (1975) Physical-chemical properties of C-phycocyanin isolated from an acido-thermophilic eukaryote, Cyanidium caldarium. Biochem J 147:63–70PubMedGoogle Scholar
  163. Kaplan D, Cohen Z, Abeliovich A (1986) Optimal growth conditions for Isochrysis galbana. Biomass 9:37–48Google Scholar
  164. Karam PA, Leslie SA (1999) Calculations of background beta-gamma radiation dose through geologic time. Health Phys 77:662–667PubMedGoogle Scholar
  165. Kashefi K, Lovley D (2000) Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem Geo 169:289–298Google Scholar
  166. Kashefi K, Lovley D (2003) Extending the upper temperature limit for life. Science 301:934PubMedGoogle Scholar
  167. Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275–3279PubMedGoogle Scholar
  168. Kashefi K, Holmes DE, Reysenbach AL, Lovley DR (2002) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:1735–1742PubMedGoogle Scholar
  169. Kasting JF, Howard MT (2006) Atmospheric composition and climate on the early Earth. Philos Trans R Soc B 361:1733–1742Google Scholar
  170. Kato C (2011) Distribution of piezophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 643–656Google Scholar
  171. Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513PubMedGoogle Scholar
  172. Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S-I, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K-I, Yoshizawa T, Nakamura Y, Robb FT, Horikoshi K, Masuchi Y, Shizuya H, Kikuchi H (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5:55–76PubMedGoogle Scholar
  173. Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-No K, Takahashi M, Sekine M, Baba S-I, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Nakazawa H, Takamiya M, Masuda S, Funahashi T, Tanaka T, Kudohm Y, Yamazaki J, Kushida N, Oguchi A, Aoki K-I, Kubota K, Nakamura Y, Nomura N, Sako Y, Kikuchi H (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6:83–101PubMedGoogle Scholar
  174. Kawarabayasi Y, Hino Y, Horikawa H, Jin-No K, Takahashi M, Sekine M, Baba S-I, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Hishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res 8:123–140PubMedGoogle Scholar
  175. Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B 150:149–191PubMedGoogle Scholar
  176. Keller M, Braun F-J, Dirmeieir R, Hafenbradl D, Burggraf S, Rachel R, Stetter KO (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on poly-sulfide at alkaline pH. Arch Microbiol 64:390–395Google Scholar
  177. Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516PubMedGoogle Scholar
  178. Kendrick M, Kral T (2006) Survival of methanogens during desiccation: implications for life on Mars. Astrobiology 6:546–551PubMedGoogle Scholar
  179. Klenk H-P, Clayton RA, Tomb J-F, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370PubMedGoogle Scholar
  180. Kobayashi T, Kwak YS, Akiba T, Kudo T, Horikoshi K (1994) Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236Google Scholar
  181. Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem 69:2019–2034PubMedGoogle Scholar
  182. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654PubMedGoogle Scholar
  183. Koshima SA (1984) A novel cold-tolerant insect found in a Himalayan glacier. Nature 310:225–227Google Scholar
  184. Kostyukova AS, Gongadze GM, Polosina YY, Bonch-Osmolovskaya EA, Miroshnichenko ML, Chernyh NA, Obraztsova MV, Svetlichny VA, Messner P, Sleytr UB, L’Haridon S, Jeanthon C, Prieur D (1999) Investigation of structure and antigenic capacities of Thermococcales cell envelopes and reclassification of “Caldococcus litoralis” Z-1301 as Thermococcus litoralis Z-1301. Extremophiles 3:239–246PubMedGoogle Scholar
  185. Krulwich TA (1995) Alkaliphiles: “Basic” molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410PubMedGoogle Scholar
  186. Krulwich TA, Ito M, Gilmour R, Sturr MG, Guffanti AA, Hicks DE (1996) Energetic problems of extremely alkaliphilic aerobes. Biochim Biophys Acta 1275:21–26PubMedGoogle Scholar
  187. Krulwich TA, Ito M, Hicks DB, Gilmour R, Guffanti AA (1998) pH homeostasis and ATP synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species. Extremophiles 2:217–222PubMedGoogle Scholar
  188. Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260PubMedGoogle Scholar
  189. Krulwich TA, Liu J, Morino M, Fujisawa M, Ito M, Hicks DB (2011a) Adaptive mechanisms of extreme alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 119–139Google Scholar
  190. Krulwich TA, Sachs G, Padan E (2011b) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343PubMedGoogle Scholar
  191. Kumar S, Arya S, Nussinov R (2007) Temperature-dependent molecular adaptation features in proteins. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 75–85Google Scholar
  192. Kurata A, Miyazaki M, Kobayashi T, Nogi Y, Horikoshi K (2007) Alkalimonas collagenimarina sp. nov., a psychrotolerant, obligate alkaliphile isolated from deep-sea sediment. Int J Syst Evol Microbiol 57:1549–1553PubMedGoogle Scholar
  193. Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T (1998) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 48:451–456PubMedGoogle Scholar
  194. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156:239–247Google Scholar
  195. L’Haridon S, Reysenbach A-L, Banta A, Messner P, Schumann P, Stackebrandt E, Jeanthon C (2003) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53:1931–1935PubMedGoogle Scholar
  196. Langdahl BR, Ingvorsen K (1997) Temperature characteristics of bacterial iron solubilisation and 14C assimilation in naturally exposed sulfide ore material at Citronen Fjord, North Greenland (83°N). FEMS Microbiol Ecol 23:275–283Google Scholar
  197. Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290PubMedGoogle Scholar
  198. Lauerer G, Kristjansson JK, Langworthy TA, König H, Stetter KO (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105Google Scholar
  199. Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73:838–845PubMedGoogle Scholar
  200. Li Y, Mandelco L, Wiegel J (1993) Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov. Int J Syst Bacteriol 43:450–460Google Scholar
  201. Liu YQ, Yao TD, Kang SC, Jiao NZ, Zeng YH, Huang SJ, Luo TW (2007) Microbial community structure in major habitats above 6000 m on Mount Everest. Chin Sci Bull 52:2350–2357Google Scholar
  202. Liu Y, Beer LL, Whitman WB (2012) Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 20:251–258PubMedGoogle Scholar
  203. Lizama C, Monteoliva-Sánchez M, Suárez-García A, Roselló-Mora R, Aguilera M, Campos V, Ramos-Cormenzana A (2002) Halorubrum tebenquichense sp. nov., a novel halophilic archaeon isolated from the Atacama Saltern Chile. Int J Syst Evol Microbiol 52:149–155PubMedGoogle Scholar
  204. Lombard M, Touati D, Fontecave M, Nivière V (2000) Superoxide reductase as a unique defense system against superoxide stress in the microaerophile Treponema pallidum. J Biol Chem 275:27021–27026PubMedGoogle Scholar
  205. Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res 24:857–863Google Scholar
  206. Lovley DR, Kashefi K, Vargas M, Tor JM, Blunt-Harris EL (2000) Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem Geol 169:289–298Google Scholar
  207. Luo H, Robb FT (2011) Thermophilic protein folding systems. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 583–599Google Scholar
  208. Ma Y, Xue Y, Grant WD, Collins NC, Duckworth AW, Steenbergen RP, Jones BE (2004) Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa. Extremophiles 8:193–200PubMedGoogle Scholar
  209. Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981PubMedGoogle Scholar
  210. Maestrojuán GM, Boone DR (1991) Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int J Syst Bacteriol 41:267–274Google Scholar
  211. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361PubMedGoogle Scholar
  212. Marion GM, Fritsen CH, Eicken H, Payne MC (2003) The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 3:785–811PubMedGoogle Scholar
  213. Marteinsson VT, Birrien J-L, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 49:351–359Google Scholar
  214. Martin DD, Bartlett DH, Roberts MF (2002) Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 6:507–514PubMedGoogle Scholar
  215. Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72PubMedGoogle Scholar
  216. Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Evol Microbiol 38:139–142Google Scholar
  217. Matin A (1990) Keeping a neutral cytoplasm: the bioenergetics of obligate acidophiles. FEMS Microbiol Rev 75:307–318Google Scholar
  218. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637PubMedGoogle Scholar
  219. McAlester AL (1970) Animal extinctions, oxygenic consumption, and atmospheric history. J Paleontol 44:405–409Google Scholar
  220. Meier-Stauffer K, Busse H-J, Rainey FA, Burghardt J, Scheberl A, Hollaus F, Kuen B, Makristathis A, Sleytr UB, Messner P (1996) Description of Bacillus thermoaerophilus sp. nov., to include sugar beet isolates and Bacillus brevis ATCC 12990. Int J Syst Evol Microbiol 46:532–541Google Scholar
  221. Mesbah NM, Wiegel J (2008) Life at extreme limits: the anaerobic halophilic alkalithermophiles. Ann N Y Acad Sci 1125:44–57PubMedGoogle Scholar
  222. Mesbah NM, Wiegel J (2011) Halophiles exposed concomitantly to multiple stressors: adaptive mechanisms of halophilic alkalithermophiles. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments. Springer, Berlin, pp 249–273Google Scholar
  223. Mesbah NM, Hendrick DB, Peacock AD, Rohde M, Wiegel J (2007) Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512PubMedGoogle Scholar
  224. Mesbah NM, Cook GM, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+(K+)/H+ antiporters. Mol Microbiol 74:270–281PubMedGoogle Scholar
  225. Mesbah NM, Dalin E, Goodwin LA, Nolan M, Pitluck S, Chertkov O, Brettin TS, Han J, Larimer FW, Land ML, Hauser LJ, Kyripides NC, Wiegel J (2011) Complete genome sequence of the anaerobic halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LFT. J Bacteriol 193:4023–4024PubMedGoogle Scholar
  226. Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334:609–611PubMedGoogle Scholar
  227. Miñana-Galbis D, Pinzón DL, Lorén G, Manresa A, Oliart-Ros RM (2010) Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. Int J Syst Evol Microbiol 60:1600–1604PubMedGoogle Scholar
  228. Miroshnichenko M (2006) Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Biomed Life Sci 10:85–96Google Scholar
  229. Miroshnichenko ML, Gongadze GM, Rainey FA, Kostyukova AS, Lysenko AM, Chernyh NA, Bonch-Osmolovskaya EA (1998) Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48:23–29PubMedGoogle Scholar
  230. Miyashita H, Ikemoto H, Kurano N, Miyachi S (2003) Acaryochloris marina gen. et sp. nov. (cyanobacteria), an oxygenic photosynthetic prokaryote containing chl d as a major pigment. J Phycol 39:1247–1253Google Scholar
  231. Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252PubMedGoogle Scholar
  232. Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60:4559–4566PubMedGoogle Scholar
  233. Moser M, Weisse T (2011) Combined stress effect of pH and temperature narrows the niche width of flagellates in acid mining lakes. J Plankton Res 33:1023–1032PubMedGoogle Scholar
  234. Mozetic M, Vratnica Z (2011) Destruction of Bacillus stearothermophilus bacteria by weakly ionized low pressure cold oxygen plasma. Vacuum 85:1080–1082Google Scholar
  235. Müller V, Köcher S (2011) Adapting to changing salinities: biochemistry, genetics, and regulation in the moderately halophilic bacterium Halobacillus halophilus. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 383–400Google Scholar
  236. Nakagawa S, Takai K, Horikoshi K, Sako Y (2004) Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 54:329–335PubMedGoogle Scholar
  237. Nakatani M, Ezaki S, Atomi H, Imanaka T (2000) A DNA ligase from a hyperthermophilic archaeon with unique cofactor specificity. J Bacteriol 182:6424–6433PubMedGoogle Scholar
  238. Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207Google Scholar
  239. Niederberger TD, Götz DK, Mcdonald IR, Rominus RS, Morgan HW (2006) Ignisphaera aggregans gen. nov., sp. nov., a novel hyperthermophilic crenarchaeote isolated from hot springs in Rotorua and Tokaanu, New Zealand. Int J Syst Evol Microbiol 56:965–971PubMedGoogle Scholar
  240. Nobre MF, Carreto L, Wait R, Tenreiro S, Fernandes O, Sharp RJ, da Costa MS (1996a) Fatty acid composition of the species of the genera Thermus and Meiothermus. Syst Appl Microbiol 19:303–311Google Scholar
  241. Nobre MF, Trüper HG, da Costa MS (1996b) Transfer of Thermus ruber (Loginova et al. 1984), Thermus silvanus (Tenreiro et al. 1995), and Thermus chliarophilus (Tenreiro et al. 1995) to Meiothermus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov., and Meiothermus chliarophilus comb. nov., respectively, and emendation of the genus Thermus. Int J Syst Bacteriol 46:604–606Google Scholar
  242. Ntougias S, Russell NJ (2001) Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int J Syst Evol Microbiol 51:1161–1170PubMedGoogle Scholar
  243. Nübel U, Garcia-Pichel F, Clavero E, Muyzer G (2000) Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol 2:217–226PubMedGoogle Scholar
  244. Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943PubMedGoogle Scholar
  245. Olsson-Francis K, de la Torre R, Cockell CS (2010) Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low Earth orbit. Appl Environ Microbiol 76:2115–2121PubMedGoogle Scholar
  246. Oren A (2002) Halophilic microorganisms and their environments. Kluwer, Dordrecht, pp 297–299Google Scholar
  247. Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2PubMedGoogle Scholar
  248. Oren A, Elevi R, Watanabe S, Ihara K, Corcelli A (2002) Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Syst Evol Microbiol 52:1831–1835PubMedGoogle Scholar
  249. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88PubMedGoogle Scholar
  250. Paper W, Jahn U, Hohn MJ, Kronner M, Näther DJ, Burghardt T, Rachel R, Stetter KO, Huber H (2007) Ignicoccus hospitalis sp. nov., the host of “Nanoarchaeum equitans”. Int J Syst Evol Microbiol 57:803–808PubMedGoogle Scholar
  251. Parhad NM, Rao NU (1974) Effect of pH on survival of Escherichia coli. Water Pollut Control 46:980–986Google Scholar
  252. Parrilli E, Sannino F, Marino G, Tutino ML (2011) Life in icy habitats: new insights supporting panspermia theory. Rend Fis Acc Lincei 22:375–383Google Scholar
  253. Patel BKC, Morgan HW, Daniel RM (1985) Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69Google Scholar
  254. Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9:R70.1–19Google Scholar
  255. Phillips RW, Wiegel J, Berry CJ, Filermans C, Peacock AD, White DC, Shimkets LJ (2002) Kineococcus radiotolerans sp. nov., a radiation-resistant, gram-positive bacterium. Int J Syst Evol Microbiol 52:933–938PubMedGoogle Scholar
  256. Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24PubMedGoogle Scholar
  257. Pikuta EV, Hoover RB, Tang J (2007a) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209PubMedGoogle Scholar
  258. Pikuta EV, Marsic D, Itoh T, Bej AK, Tang J, Whitman WB, Ng JD, Garriott OK, Hoover RB (2007b) Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:1612–1618PubMedGoogle Scholar
  259. Pledger RJ, Baross JA (1991) Preliminary description and nutritional characterization of a chemoorganotrophic archaeobacterium growing at temperatures of up to 110 °C isolated from a submarine hydrothermal vent environment. J Gen Microbiol 137:203–211Google Scholar
  260. Pley U, Schipka J, Gambacorta A, Jannasch HW, Fricke H, Rachel R, Stetter KO (1991) Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C. Syst Appl Microbiol 14:245–253Google Scholar
  261. Prokofeva MI, Miroshnichenko ML, Kostrikina NA, Chernyh NA, Kuznetsov BB, Tourova TP, Bonch-Osmolovskaya EA (2000) Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka. Int J Syst Evol Microbiol 50:2001–2008PubMedGoogle Scholar
  262. Rahm G (1923) Biologische und physiologische Beiträge zur Kenntnis der Moosfauna. Z Allg Physiol 20:1–34Google Scholar
  263. Rahm G (1937) A new order of tardigrades from the hot springs of Japan (Furu-yu section, Unzen). Annot Zool Jpn 16:345–352Google Scholar
  264. Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2:1602–1623Google Scholar
  265. Ravot G, Magot M, Fardeau M-L, Patel BKC, Prensier G, Egan A, Garcia J-L, Ollivier B (1995a) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil- producing well. Int J Syst Bacteriol 45:308–314PubMedGoogle Scholar
  266. Ravot G, Ollivier B, Magot M, Patel BKC, Crolet J, Fardeau M-L, Garcia J-L (1995b) Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Appl Environ Microbiol 61:2053–2055PubMedGoogle Scholar
  267. Ravot G, Ollivier B, Patel B, Magot M, Garcia J-L (1996) Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulfate as an electron acceptor. Int J Syst Evol Microbiol 46:321–323Google Scholar
  268. Raymond JC, Sistrom WR (1969) Ectothiorhodospira halophila: a new species of the genus Ectothiorhodospira. Arch Mikrobiol 69:121–126PubMedGoogle Scholar
  269. Reeb V, Bhattacharya D (2010) The thermo-acidophilic Cyanidiophyceae (Cyanidiales). In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, Dordrecht, pp 409–426Google Scholar
  270. Rice CV, Wickham JR, Eastman MA, Harrison W, Pereira MP, Brown ED (2008) Magnetic resonance tells microbiology where to go; bacterial teichoic acid protects liquid water at sub-zero temperatures. In: Hoover RB, Levin GV, Rozanov AY, Davies PCW (eds) Instruments, methods, and missions for astrobiology XI. Proceedings of SPIE 7097. SPIE Press, San Diego, pp 1–10Google Scholar
  271. Rijkenberg MJA, Kort R, Hellingwerf KJ (2001) Alkalispirillum mobile gen. nov., spec. nov., an alkaliphilic non-phototrophic member of the Ectothiorhodospiraceae. Arch Microbiol 175:369–375PubMedGoogle Scholar
  272. Robb FT, Maeder DL (1998) Novel evolutionary histories and adaptive features of proteins from hyperthermophiles. Curr Opin Biotechnol 9:288–291PubMedGoogle Scholar
  273. Romanenko LA, Schumann P, Rohde M, Lysenko AM, Mikhailov VV, Stackebrandt E (2002a) Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. Int J Syst Evol Microbiol 52:1291–1297PubMedGoogle Scholar
  274. Romanenko LA, Schumann P, Rohde M, Mikhailov VV, Stackebrandt E (2002b) Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium. Int J Syst Evol Microbiol 52:1767–1772PubMedGoogle Scholar
  275. Rothschild LJ (2010) A powerful toolkit for synthetic biology: over 3.8 billion years of evolution. Bioessays 32:304–313PubMedGoogle Scholar
  276. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101PubMedGoogle Scholar
  277. Roulling F, Piette F, Cipolla A, Struvay C, Feller G (2011) Psychrophilic enzymes: cool responses to chilly problems. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 891–913Google Scholar
  278. Saffary R, Nandakumar R, Spencer D, Robb FT, Davila JM, Swartz M, Ofman L, Thomas RJ, DiRuggiero J (2002) Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight. FEMS Microbiol Lett 215:163–168PubMedGoogle Scholar
  279. Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Hoaki T, Maruyama T (1996a) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 °C. Int J Syst Bacteriol 46:1070–1077PubMedGoogle Scholar
  280. Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y (1996b) Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Evol Microbiol 46:1099–1104Google Scholar
  281. Sako Y, Nunoura T, Uchida A (2001) Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97 oC. Int J Syst Evol Microbiol 51:303–309PubMedGoogle Scholar
  282. Santos H, Lamosa P, Borges N, Gonçalves LG, Pais T, Rodrigues MV (2011) Organic compatible solutes of prokaryotes that thrive in hot environments: the importance of ionic compounds for thermostabilization. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 497–520Google Scholar
  283. Saum SH, Müller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Syst 4:4PubMedGoogle Scholar
  284. Schill RO (2010) Anhydrobiotic abilities of tardigrades. In: Lubzens E, Cerdà J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Heidelberg, pp 133–146Google Scholar
  285. Schleper C, Pühler G, Klenk H-P, Zillig W (1996) Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. Int J Syst Bacteriol 46:814–816Google Scholar
  286. Schlesner H, Lawson PA, Collins MD, Weiss N, Wehmeyer U, Völker H, Thomm M (2001) Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-D-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51:425–431PubMedGoogle Scholar
  287. Scholz T, Demharter W, Hensel R, Kandler O (1987) Bacillus pallidus sp. nov., a new thermophilic species from sewage. Syst Appl Microbiol 9:91–96Google Scholar
  288. Seckbach J, Kaplan IR (1973) Growth pattern and 13C/12C isotope fractionation of Cyanidium caldarium and hot spring algal mats. Chem Geol 12:161–169Google Scholar
  289. Seckbach J, Libby WF (1970) Vegetative life on Venus? Or investigations with algae which grow under pure CO2 in hot acid media at elevated pressures. Space Life Sci 2:121–143PubMedGoogle Scholar
  290. Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564Google Scholar
  291. Segerer AH, Trincone A, Gahrtz M, Stetter KO (1991) Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int J Syst Bacteriol 41:495–501Google Scholar
  292. Seki K, Toyoshima M (1998) Preserving tardigrades under pressure. Nature 395:853–854Google Scholar
  293. Shcherbakova VA, Chuvil’skaya NA, Rivkina EM, Pecheritsyna SA, Suetin SV, Laurinavichius KS, Lysenko AM, Gilichinsky DA (2009) Novel halotolerant bacterium from cryopeg in permafrost: description of Psychrobacter muriicola sp. nov. Mikrobiologiia 78:98–105PubMedGoogle Scholar
  294. Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11:50–61PubMedGoogle Scholar
  295. Singh N, Kendall MM, Liu Y, Boone DR (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55:2531–2538PubMedGoogle Scholar
  296. Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577PubMedGoogle Scholar
  297. Sømme L (1995) Invertebrates in hot and cold arid environments. Springer, Berlin, 275 ppGoogle Scholar
  298. Spijkerman E, Barua D, Gerloff-Elias A, Kern J, Gaedke U, Heckathorn SA (2007) Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium. Extremophiles 11:551–562PubMedGoogle Scholar
  299. Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer K-H (1996) Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496Google Scholar
  300. Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814PubMedGoogle Scholar
  301. Stedmen KM, She Q, Phan H, Holz I, Singh H, Prangishvili D, Garrett R, Zillig W (2000) pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus: Insights into recombination and conjugation in crenarchaeota. J Bacteriol 182:7014–7020Google Scholar
  302. Steiner G, Albin FE (1946) Resuscitation of the nematode Tylenchus polyhypnus n. sp., after almost 39 years’ dormancy. J Wash Acad Sci 36:97–99PubMedGoogle Scholar
  303. Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173Google Scholar
  304. Stetter KO, Thomm M, Winter J, Wildgruber G, Huber H, Zillig W, Jane-Covic D, König H, Palm P, Wunderl S (1981) Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl Bakt Hyg I Abt Orig C 2:166–178Google Scholar
  305. Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur-reducing archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4:535–551PubMedGoogle Scholar
  306. Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Lett 75:117–124Google Scholar
  307. Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745Google Scholar
  308. Stock A, Breiner H-W, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T (2012) Microbial eukaryotic life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34PubMedGoogle Scholar
  309. Suzuki T, Iwasaki T, Uzawa T, Hara K, Nemoto N, Kon T, Ueki T, Yamagishi A, Oshima T (2002) Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6:39–44PubMedGoogle Scholar
  310. Svetlitshnyi V, Rainey F, Wiegel J (1996) Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short – and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137PubMedGoogle Scholar
  311. Tainer JA, Getzoff ED, Richardson JS, Richardson DC (1983) Structure and mechanism of copper, zinc superoxide dismutase. Nature 306:284–287PubMedGoogle Scholar
  312. Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909PubMedGoogle Scholar
  313. Takai K, Horikoshi K (2000) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17PubMedGoogle Scholar
  314. Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500PubMedGoogle Scholar
  315. Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629PubMedGoogle Scholar
  316. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954PubMedGoogle Scholar
  317. Takayanagi S, Kawasaki H, Sugimori K, Yamada T, Sugai A, Ito T, Yamasato K, Shioda M (1996) Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. Int J Syst Bacteriol 46:377–382PubMedGoogle Scholar
  318. Temple KL, Colmer AR (1951) The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. J Bacteriol 62:605–611PubMedGoogle Scholar
  319. Than K (2011) Why giant bugs once roamed the Earth. Nat Geo 1:1–3Google Scholar
  320. Thomas AS, Elcock AH (2004) Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperature. J Am Chem Soc 126:2208–2214PubMedGoogle Scholar
  321. Tor JM, Kashefi K, Lovley DR (2001) Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms. Appl Environ Microbiol 67:1363–1365PubMedGoogle Scholar
  322. Torsvik V, Øvreås L (2008) Microbial diversity, life strategies, and adaptation to life in extreme soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin, pp 15–43Google Scholar
  323. Toueille M, Sommer S (2011) Life in extreme conditions: Deinococcus radiodurans, an organisms able to survive prolonged desiccation and high doses of ionizing radiation. In: Gargaud M, López-García P, Martin H (eds) Origins and evolution of life: an astrobiological perspective. Cambridge University Press, New York, pp 347–358Google Scholar
  324. Trent JD (1996) A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea. FEMS Microbiol Rev 18:249–258Google Scholar
  325. Trevors JT, Bej AK, van Elsas JD (2012) Hypothesized microenvironments for the origin of microbial life on Earth. In: Seckbach J (ed) Genesis – in the beginning: precursors of life, chemical models and early biological evolution. Springer, Dordrecht, pp 775–795Google Scholar
  326. United Nations (2000) Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations sales publications E.00.IX.3 and E.00.IX.4. United Nations, New YorkGoogle Scholar
  327. van de Vossenberg JLCM, Driessen AJM, Zillig W, Konings WN (1998) Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:67–74PubMedGoogle Scholar
  328. van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, the BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123PubMedGoogle Scholar
  329. Vanlint D, Michiels CW, Aertsen A (2011) Piezophysiology of the model bacterium Escherichia coli. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 669–686Google Scholar
  330. Verberk WCEP, Bilton DT (2011) Can oxygen set thermal limits in an insect and drive gigantism? PLoS One 6:e22610PubMedGoogle Scholar
  331. Vetriani C, Maeder DL, Tolliday N, Yip KS-P, Stillman TJ, Britton KL, Rice DW, Klump HH, Robb FT (1998) Protein thermostability above 100 °C: a key role for ionic interactions. Proc Natl Acad Sci U S A 95:12300–12305PubMedGoogle Scholar
  332. Von Klein D, Arab H, Völker H, Thomm M (2002) Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles 6:103–110Google Scholar
  333. Vorholt J, Kunow J, Stetter KO, Thauer RK (1995) Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch Microbiol 163:112–118Google Scholar
  334. Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD, Kamekura M (2002) Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452PubMedGoogle Scholar
  335. Wainø M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis, gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190PubMedGoogle Scholar
  336. Waksman SA, Joffe JS (1922) Microorganisms concerned in the oxidation of sulfur in the soil II. Thiobacillus thiooxidans, a new sulfur-oxidizing organism isolated from the soil. J Bacteriol 7:239–256PubMedGoogle Scholar
  337. Watanabe M, Sakashita T, Fujita A, Kikawada T, Horikawa DD, Nakahara Y, Wada S, Funayama T, Hamada N, Kobayashi Y, Okuda T (2006) Biological effects of anhydrobiosis in an African chironomid, Polypedilum vanderplanki, on radiation tolerance. Int J Radiat Biol 82:587–592PubMedGoogle Scholar
  338. Weinstein RN, Palm ME, Johnstone K, Wynn-Wiliiams DD (1997) Ecological and physiological characterization of Humicola marvinii, a new psychrophilic fungus from fellfield soils in the maritime Antarctic. Mycologia 89:706–711Google Scholar
  339. West JB, Lahiri S, Maret KH, Peters RM Jr, Pizzo CJ (1983) Barometric pressures at extreme altitudes on Mt. Everest: physiological significance. J Appl Physiol 54:1188–1194PubMedGoogle Scholar
  340. Wharton DA, Marshall AT (2002) Changes in surface features during desiccation of the anhydrobiotic plant parasitic nematode Ditylenchus dipsaci. Tissue Cell 34:81–87PubMedGoogle Scholar
  341. Wiegel J (1998) Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2:257–267PubMedGoogle Scholar
  342. Wiegel J (2011) Anaerobic alkaliphiles and alkaliphilic poly-extremophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 81–97Google Scholar
  343. Wiegel J, Ljundgahl LG (1982) Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum. J Bacteriol 151:507–509PubMedGoogle Scholar
  344. Wisotzkey JD, Jurtshuk P Jr, Fox GE, Deinhard G, Poralla K (1992) Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269PubMedGoogle Scholar
  345. Wright JC (2001) Cryptobiosis 300 years on from van Leuwenhoek: what have we learned about tardigrades? Zool Anz 240:563–582Google Scholar
  346. Xu Y, Zhou P, Tian X (1999) Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 49:261–266PubMedGoogle Scholar
  347. Yakimov MM, Giuliano L, Chernikova TN, Gentile G, Abraham W-R, Lünsdorf H, Timmis KN, Golyshin PN (2001) Alcalilimnicola halodurans gen. nov., sp. nov., an alkaliphilic, moderately halophilic and extremely halotolerant bacterium, isolated from sediments of soda-depositing Lake Natron, East Africa Rift Valley. Int J Syst Evol Microbiol 51:2133–2143PubMedGoogle Scholar
  348. Yoon J-H, Lee K-C, Kho YH, Kang KH, Kim C-J, Park YH (2002) Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52:123–130PubMedGoogle Scholar
  349. Yoshida N, Nakasato M, Ohmura N, Ando A, Saiki H, Ishii M, Igarashi Y (2006) Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Curr Microbiol 53:406–411PubMedGoogle Scholar
  350. Yumoto I, Hirota K, Nodasaka Y, Yokota Y, Hoshino T, Nakajima K (2004) Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54:2379–2383PubMedGoogle Scholar
  351. Zaccai G (2011) Molecular adaptations to life in high salt: lessons from Haloarcula marismortui. In: Gargaud M, López-García P, Martin H (eds) Origins and evolution of life: an astrobiological perspective. Cambridge University Press, New York, pp 375–388Google Scholar
  352. Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713PubMedGoogle Scholar
  353. Zerkle AL, Claire MW, Domagal-Goldman SD, Farquhar J, Poulton SW (2012) A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat Geosci 5:359–363Google Scholar
  354. Zhang W, Xue Y, Ma Y, Zhou P, Ventosa A, Grant WD (2002) Salinicoccus alkaliphilus sp. nov., a novel alkaliphile and moderate halophile from Baer Soda Lake in Inner Mongolia Autonomous Region, China. Int J Syst Evol Microbiol 52:789–793PubMedGoogle Scholar
  355. Zhang P, Liu S, Cong B, Wu G, Liu C, Lin X, Shen J, Huang X (2011) A novel omega-3 fatty acid desaturase involve in acclimation processes of polar condition from Antarctic ice algae Chlamydomonas sp. ICE-L. Mar Biotechnol 13:393–401PubMedGoogle Scholar
  356. Zhao H, Wood AG, Widdel F, Bryant MP (1988) An extremely thermophilic Methanococcus from a deep-sea hydrothermal vent and its plasmid. Arch Microbiol 50:178–183Google Scholar
  357. Zhilina TN, Garnova ES, Tourova TP, Kostrikina NA, Zavarzin GA (2001) Halonatronum saccharophilum gen. nov. sp. nov.: a new haloalkaliphilic bacterium of the order Haloanaerobiales from Lake Magadi. Mikrobiologiya 70:64–72Google Scholar
  358. Zhou Y, Xu J, Xu L, Tindall B (2009) Falsibacillus pallidus to replace the homonym Bacillus pallidus Zhou et al. 2008. Int J Syst Evol Microbiol 59:3176–3180PubMedGoogle Scholar
  359. Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus “Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269Google Scholar
  360. Zillig W, Stetter KO, Prangishvilli D, Schäfer W, Wunderl S, Janekovic D, Holz I, Palm P (1982) Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abt Orig C 3:304–317Google Scholar
  361. Zillig W, Gierl A, Schreiber G, Wunderi S, Janekovic D, Stetter KO, Klenk HP (1983a) The archaebacterium Thermofilum pendens represents, a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87PubMedGoogle Scholar
  362. Zillig W, Holz I, Janekovic D, Schäer W, Reiter WD (1983b) The archaebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94PubMedGoogle Scholar
  363. Zillig W, Yeats S, Holz I, Bock A, Gropp F, Rettenberger M, Lutz S (1985) Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Nature 313:789–791PubMedGoogle Scholar
  364. Zillig W, Yeats S, Holz I, Bock A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8:197–203Google Scholar
  365. Zillig W, Holz I, Klenk HP, Trent J, Wunderl S, Janekovic D, Imsel E, Haas B (1987) Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales. Syst Appl Microbiol 9:62–70Google Scholar
  366. Zillig W, Holz I, Klenk HP, Imsel E, Trent J, Wunderl S, Forjaz VH, Coutinho R, Ferreira T (1990) Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965PubMedGoogle Scholar
  367. Zillig W, Arnold HP, Holz I, Prangishvili D, Schweier A, Stedman K, She Q, Phan H, Garrett R, Kristjansson JK (1998) Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles 2:131–140PubMedGoogle Scholar
  368. ZoBell CE (1952) Bacterial life at the bottom of the Philippine Trench. Science 115:507–508PubMedGoogle Scholar
  369. Zychlinsky E, Matin A (1983) Cytoplasmic pH homeostasis in an acidophilic bacterium, Thiobacillus acidophilus. J Bacteriol 156:1352–1355PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mark C. Capece
    • 1
    Email author
  • Evan Clark
    • 2
  • Jamal K. Saleh
    • 3
  • Daniel Halford
    • 4
  • Nicole Heinl
    • 3
  • Samuel Hoskins
    • 3
  • Lynn J. Rothschild
    • 5
    • 6
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Department of Computer ScienceStanford UniversityStanfordUSA
  3. 3.Department of BiologyStanford UniversityStanfordUSA
  4. 4.Department of Geological and Environmental SciencesStanford UniversityStanfordUSA
  5. 5.NASA Ames Research CenterMoffett FieldUSA
  6. 6.Program in Human BiologyStanford UniversityStanfordUSA

Personalised recommendations