Skip to main content

Structural, calorimetric and magnetic properties study of the Cu0,91Fe0,09O system

  • Conference paper
  • First Online:
LACAME 2012

Abstract

In this work the Cu0.91Fe0.09O nanocrystalline system was prepared via the co-precipitation method. Using Mössbauer Spectrometry, X-Ray Diffraction, Vibrating Sample Magnetometry, Thermogravimetry and Differential Scanning Calorimetry, we study the magnetic behavior, and the structural and calorimetric properties of this system. X-ray diffraction shows only the presence of the CuO structural monoclinic phase, suggesting that Cu atoms are substituted by Fe ones. This hypothesis was confirmed by Mössbauer spectrometry at room temperature, because it shows that the spectrum is formed by two doublets, which correspond to Fe+2 and Fe+3 sites. Hysteresis cycles obtained by vibrating sample magnetometry detect a soft ferromagnetic behavior at room temperature with coercive fields between 8 and 20 Oe. At T = 20 K the sample shows a hard-magnetic behavior. The thermogravimetry results show a Néel temperature (T N > 440 °C). The differential scanning calorimetry curve show two endothermic peaks in the 90–120 °C range.

Proceedings of the Thirteenth Latin American Conference on the Applications of the Mössbauer Effect, (LACAME 2012), Medellín, Columbia, 11–16 November 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batlle, X., Labarta, A.: J. Phys. D 35, R15 (2012)

    Article  Google Scholar 

  2. Zhang, J., Liu, J., Peng, Q., Wang, X., Li, Y.: Chern. Mater. 18(4), 867–871 (2006)

    Article  Google Scholar 

  3. Teng, F., Yao, W., Zheng, Y., Ma, Y., Teng, Y., et al.: Sens. Actuators B, Chern. 134, 761–768 (2008)

    Google Scholar 

  4. Anandan, S., Wen, X., Yang, S.: Mater. Chern. Phys. 93, 35–40 (2005)

    Article  Google Scholar 

  5. Hsieh, C.-T., Chen, J.-M., Lin, H.-H., Shih, H.-C.: Appl. Phys. Lett. 83, 3383–3385 (2003)

    Article  ADS  Google Scholar 

  6. Roden, B., Braun, E., Freimuth, A.: Solid State Commun. 64, 1051–1052 (1987)

    Article  ADS  Google Scholar 

  7. Borzi, R.A., Stewart, S.J., Punte, G., et al.: J. Appl. Phys. 87, 4870–4872 (2000)

    Article  ADS  Google Scholar 

  8. Bishta, V., Rajeeva, K.P., Banerjee, S.: arXiv:0911.1838v2 (2011)

  9. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., et al.: Sci., 294, 1488–1495 (2001)

    Article  ADS  Google Scholar 

  10. Fukimura, T., Yamada, Y., Toyosaki, H., et al.: Appl. Surf. Sci. 223, 62–67 (2004)

    Article  ADS  Google Scholar 

  11. Punnoose, A., Magnone, H., Seehra, M.S., Bonevich, J.: Phys. Rev. B. 64, 174420 (2001)

    Article  ADS  Google Scholar 

  12. Rao, G.N., Yao, Y.D., Chen, J.W.: IEEE Trans. Magn. 41, 3409–3411 (2005)

    Article  ADS  Google Scholar 

  13. Crystal lattice structures [On-Line]. http://cst-www.nrl.navy.mil/lattice/spcgrp/index.html. Accessed 5 Jan 2012

  14. Li, Y., Xu, M., Pan, L., Zhang, Y., Guo, Z., Bi, C.: J. Appl. Phys. 107, 113908 (2010)

    Article  ADS  Google Scholar 

  15. Yin, S.Y., Yuan, S.L., Tian, Z.M., Liu, L., Wang, C.H., Zheng, X.F., Duan, H.N., Huo, S.X.: J. Appl. Phys. 107, 043909 (2010)

    Article  ADS  Google Scholar 

  16. Jing, Z., Qinglin, Z., Jinmin, L.: 33(013001), 1–3 (2012)

    Google Scholar 

  17. Colorado, H.D., Pérez Alcázar, G.A.: Hyperfine Interact. 202, 139–144 (2011)

    Article  ADS  Google Scholar 

  18. Joseph, D.P., Venkateswaran, C., Vennila, R.S.: Adv. Mater. Sci. Eng. 2010, 1–4 (2010)

    Article  Google Scholar 

  19. Teillet, J., Varret, F.: MosfitProgramm, University du Maine, unpublished, (1976)

    Google Scholar 

  20. Larson, A.C., Von Dreele, R.B.: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, pp. 86–748 (1994)

    Google Scholar 

  21. O’Handley, R.C.: Modern Magnetic Materials. Wiley, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Colorado, H.D., Hernandez, J.S.T., Alcázar, G.A.P., Bolaños, A. (2013). Structural, calorimetric and magnetic properties study of the Cu0,91Fe0,09O system. In: Meneses, C.A.B., Caetano, E.P., Torres, C.E.R., Pizarro, C., Alfonso, L.E.Z. (eds) LACAME 2012. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6482-8_20

Download citation

Publish with us

Policies and ethics