Skip to main content

Molecular Markers of Cholangiocarcinoma

  • Chapter
  • First Online:
Book cover Hilar Cholangiocarcinoma

Abstract

Bile is a fluid that helps us to digest food and its main function is to break down fats in food. Bile is made by the liver and stored in the gall bladder. Bile ducts are tubes that carry bile and they connect the liver and the gall bladder to the duodenum and the small intestine. In people who have had their gall bladders removed, bile flows directly from the liver into the duodenum and the small intestine. The bile ducts and gall bladder are known as the biliary system (Fig. 10.1). Cholangiocarcinoma (CC) is a malignant tumor arising from the bile duct epithelium. They start in mucus glands that line the bile ducts. If cancer starts in the part of the bile ducts within the liver it is known as intra-hepatic. If it starts in bile ducts outside the liver it is known as extra-hepatic. It may arise from the right and left hepatic ducts at or near their junction (hilar cholangiocarcinoma) which are considered as carcinoma of the extrahepatic bile ducts (for a review, please see Refs. [1–8]). Cancers of the biliary system are almost always adenocarcinomas. The incidence of cholangiocarcinoma reveals wide geographic variations: the highest incidence is reported in areas suffering from endemic infestation with liver fluke. The liver flukes, Opisthorchis viverrini and Clonorchis sinensis, which induce cholangiocarcinomas, are common in Africa and Asia, especially in Thailand and Laos in Southeast Asia, and in some parts of China. Intrahepatic cholangiocarcinoma is the second most prevalent intrahepatic primary cancer. Hilar cholangiocarcinoma is the fourth most common gastrointestinal malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Menachem T. Risk factors for cholangiocarcinoma. Eur J Gastroenterol Hepatol. 2007;19:615–7.

    Article  PubMed  Google Scholar 

  2. Malhi H, Gores GJ. Review article: the modern diagnosis and therapy of cholangiocarcinoma. Aliment Pharmacol Ther. 2006;23:1287–96.

    Article  PubMed  CAS  Google Scholar 

  3. Aljiffry M, Walsh MJ, Molinari M. Advances in diagnosis, treatment and palliation of cholangiocarcinoma: 1990–2009. World J Gastroenterol. 2009;15:4240–62.

    Article  PubMed  CAS  Google Scholar 

  4. Meza-Junco J, Montano-Loza AJ, Ma M, et al. Cholangiocarcinoma: has there been any progress? Can J Gastroenterol. 2010;24:52–7.

    PubMed  Google Scholar 

  5. Thelen A, Scholz A, Weichert W, et al. Tumor-associated ­angiogenesis and lymphangiogenesis correlate with progression of intrahepatic cholangiocarcinoma. Am J Gastroenterol. 2010;105:1123–32.

    Article  PubMed  Google Scholar 

  6. Karlsen TH, Schrumpf E, Boberg KM. Genetic epidemiology of primary sclerosing cholangitis. World J Gastroenterol. 2007;13:5421–31.

    PubMed  CAS  Google Scholar 

  7. Shen WF, Zhong W, Xu F, et al. Clinicopathological and prognostic analysis of 429 patients with intrahepatic cholangiocarcinoma. World J Gastroenterol. 2009;15:5976–82.

    Article  PubMed  CAS  Google Scholar 

  8. Rashid A. Cellular and molecular biology of biliary tract cancers. Surg Oncol Clin N Am. 2002;11:995–1009.

    Article  PubMed  Google Scholar 

  9. Chan JY, Wang Z. Tumor markers. In: Lau WY, editor. Hepatocellular carcinoma. Singapore: World Scientific Publishing Co; 2008. p. 159–82.

    Chapter  Google Scholar 

  10. Chan JY, Lee KKH, Chui YL, et al. Molecular aspects. In: Lau WY, editor. Hepatocellular carcinoma. Singapore: World Scientific Publishing Co; 2008. p. 243–78.

    Chapter  Google Scholar 

  11. Perumal V, Wang J, Thuluvath P, et al. Hepatitis C and hepatitis B nucleic acids are present in intrahepatic cholangiocarcinomas from the United States. Hum Pathol. 2006;37:1211–6.

    Article  PubMed  CAS  Google Scholar 

  12. Chen RF, Li ZH, Zou SQ, et al. Effect of hepatitis C virus core protein on modulation of cellular proliferation and apoptosis in hilar cholangiocarcinoma. Hepatobiliary Pancreat Dis Int. 2005;4:71–4.

    PubMed  CAS  Google Scholar 

  13. Zhou H, Wang H, Zhou D, et al. Hepatitis B virus-associated intrahepatic cholangiocarcinoma and hepatocellular carcinoma may hold common disease process for carcinogenesis. Eur J Cancer. 2010;46:1056–61.

    Article  PubMed  CAS  Google Scholar 

  14. Khan SA, Thomas HC, Toledano MB, et al. p53 Mutations in human cholangiocarcinoma: a review. Liver Int. 2005;25:704–16.

    Article  PubMed  CAS  Google Scholar 

  15. Liu XF, Zhang H, Zhu SG, et al. Correlation of p53 gene mutation and expression of P53 protein in cholangiocarcinoma. World J Gastroenterol. 2006;12:4706–9.

    PubMed  CAS  Google Scholar 

  16. Tullo A, D’Erchia AM, Honda K, et al. New p53 mutations in hilar cholangiocarcinoma. World J Surg. 2004;28:995–1000.

    Article  Google Scholar 

  17. Caca K, Feisthammel J, Klee K, et al. Inactivation of the INK4a/ARF locus and p53 in sporadic extrahepatic bile duct cancers and bile tract cancer cell lines. Int J Cancer. 2002;97:481–8.

    Article  PubMed  CAS  Google Scholar 

  18. Klump B, Hsieh CJ, Dette S, et al. Promoter methylation of INK4a/ARF as detected in bile-significance for the differential diagnosis in biliary disease. Clin Cancer Res. 2003;9:1773–8.

    PubMed  CAS  Google Scholar 

  19. Kang YK, Kim WH, Jang JJ. Expression of G1-S modulators (p53, p16, p27, cyclin D1, Rb) and Smad4/Dpc4 in intrahepatic cholangiocarcinoma. Hum Pathol. 2002;33:877–83.

    Article  PubMed  CAS  Google Scholar 

  20. Taniai M, Higuchi H, Burgart LJ, et al. p16INK4a promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma. Gastroenterology. 2002;123:1090–8.

    Article  PubMed  CAS  Google Scholar 

  21. Tannapfel A, Benicke M, Katalinic A, et al. Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut. 2000;47:721–7.

    Article  PubMed  CAS  Google Scholar 

  22. Liew CT, Li HM, Lo KW, et al. High frequency of p16INK4A gene alterations in hepatocellular carcinoma. Oncogene. 1999;18:789–95.

    Article  PubMed  CAS  Google Scholar 

  23. Zheng J, Zhu YM. Expression of c-erbB-2 proto-oncogene in extrahepatic cholangiocarcinoma and its clinical significance. Hepatobiliary Pancreat Dis Int. 2007;6:412–5.

    PubMed  CAS  Google Scholar 

  24. Nakazawa K, Dobashi Y, Suzuki S, et al. Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-met in biliary tract cancers. Hum Pathol. 2003;34:902–10.

    Article  Google Scholar 

  25. Treekitkarnmongkol W, Suthiphongchai T. High expression of ErbB2 contributes to cholangiocarcinoma cell invasion and proliferation through AKT/p70S6K. World J Gastroenterol. 2010;16:4047–54.

    Article  PubMed  CAS  Google Scholar 

  26. Yoshikawa D, Ojima H, Iwasaki M, et al. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer. 2008;98:418–25.

    Article  PubMed  CAS  Google Scholar 

  27. Guedj N, Zhan Q, Perigny M, et al. Comparative protein expression profiles of hilar and peripheral hepatic cholangiocarcinomas. J Hepatol. 2009;51:93–101.

    Article  PubMed  CAS  Google Scholar 

  28. Tada M, Omata M, Ohto M. High incidence of ras gene mutation in intrahepatic cholangiocarcinoma. Cancer. 1992;69:1115–8.

    Article  PubMed  CAS  Google Scholar 

  29. Kiba T, Tsuda H, Pairojkul C, et al. Mutations of the p53 tumor suppressor gene and the ras gene family in intrahepatic cholangiocellular carcinomas in Japan and Thailand. Mol Carcinogen. 1993;8:312–8.

    Article  CAS  Google Scholar 

  30. Tsuda H, Satarug S, Bhudhisawasdi V, et al. Cholangiocarcinomas in Japanese and Thai patients: difference in etiology and incidence of point mutation of the c-Ki-ras proto-oncogene. Mol Carcinogen. 1992;6:266–9.

    Article  CAS  Google Scholar 

  31. Chen CY, Shiesh SC, Wu SJ. Rapid detection of K-ras mutations in bile by peptide nucleic acid-mediated PCR clamping and melting curve analysis: comparison with restriction fragment length polymorphism analysis. Clin Chem. 2004;50:481–9.

    Article  PubMed  CAS  Google Scholar 

  32. Sugimachi K, Taguchi K, Aishima S, et al. Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Mod Pathol. 2001;14:900–5.

    Article  PubMed  CAS  Google Scholar 

  33. Zhai B, Yan HX, Liu SQ, et al. Reduced expression of P120 catenin in cholangiocarcinoma correlated with tumor clinicopathologic parameters. World J Gastroenterol. 2008;14:3739–44.

    Article  PubMed  CAS  Google Scholar 

  34. Riener MO, Vogetseder A, Pestalozzi BC, et al. Cell adhesion molecules P-cadherin and CD24 are markers for carcinoma and dysplasia in the biliary tract. Hum Pathol. 2010;41:1558–65.

    Article  PubMed  CAS  Google Scholar 

  35. Yonglitthipagon P, Pairojkul C, Chamgramol Y, et al. Up-regulation of annexin A2 in cholangiocarcinoma caused by Opisthorchis viverrini and its implication as a prognostic marker. Int J Parasitol. 2010;40:1203–12.

    Article  PubMed  CAS  Google Scholar 

  36. Aishima S, Taguchi K, Terashi T, et al. Tenascin expression at the invasive front is associated with poor prognosis in intrahepatic cholangiocarcinoma. Mod Pathol. 2003;16:1019–27.

    Article  PubMed  Google Scholar 

  37. Jain R, Fischer S, Serra S, et al. The use of Cytokeratin 19 (CK19) immunohistochemistry in lesions of the pancreas, gastrointestinal tract, and liver. Appl Immunohistochem Mol Morphol. 2010;18:9–15.

    Article  PubMed  CAS  Google Scholar 

  38. Stroescu C, Herlea V, Dragnea A, et al. The diagnostic value of cytokeratins and carcinoembryonic antigen immunostaining in differentiating hepatocellular carcinomas from intrahepatic cholangiocarcinomas. J Gastrointestin Liver Dis. 2006;15:9–14.

    PubMed  Google Scholar 

  39. Koga Y, Kitajima Y, Miyoshi A, et al. Tumor progression through epigenetic gene silencing of O6-methylguanine-DNA methyltransferase in human biliary tract cancers. Ann Surg Oncol. 2005;12:354–63.

    Article  PubMed  Google Scholar 

  40. Nagai M, Kawarada Y, Watanabe M, et al. Analysis of microsatellite instability, TGF-beta type II receptor gene mutations and hMSH2 and hMLH1 allele losses in pancreaticobiliary maljunction-associated biliary tract tumors. Anticancer Res. 1999;19(3A):1765–8.

    PubMed  CAS  Google Scholar 

  41. Obama K, Satoh S, Hamamoto R, et al. Enhanced expression of RAD51 associating protein-1 is involved in the growth of ­intrahepatic cholangiocarcinoma cells. Clin Cancer Res. 2008;14:1333–9.

    Article  PubMed  CAS  Google Scholar 

  42. Liengswangwong U, Karalak A, Morishita Y, et al. Immuno­histochemical expression of mismatch repair genes: a screening tool for predicting mutator phenotype in liver fluke infection-associated intrahepatic cholangiocarcinoma. World J Gastroenterol. 2006;12:3740–5.

    PubMed  CAS  Google Scholar 

  43. Thanan R, Murata M, Pinlaor S, et al. Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine in patients with parasite infection and effect of antiparasitic drug in relation to cholangiocarcinogenesis. Cancer Epidemiol Biomarkers Prev. 2008;17:518–24.

    Article  PubMed  CAS  Google Scholar 

  44. Pinlaor S, Sripa B, Ma N, et al. Nitrative and oxidative DNA damage in intrahepatic cholangiocarcinoma patients in relation to tumor invasion. World J Gastroenterol. 2005;11:4644–9.

    PubMed  CAS  Google Scholar 

  45. Leelawat K, Leelawat S, Ratanachu-Ek T, et al. Circulating hTERT mRNA as a tumor marker in cholangiocarcinoma patients. World J Gastroenterol. 2006;12:4195–8.

    PubMed  CAS  Google Scholar 

  46. Mansuroglu T, Ramadori P, Dudás J, et al. Expression of stem cell factor and its receptor c-Kit during the development of intrahepatic cholangiocarcinoma. Lab Invest. 2009;89:562–74.

    Article  PubMed  CAS  Google Scholar 

  47. Han C, Wu T. Cyclooxygenase-2-derived prostaglandin E2 ­promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. J Biol Chem. 2005;280:24053–63.

    Article  PubMed  CAS  Google Scholar 

  48. Tischoff I, Wittekind C, Tannapfel A. Role of epigenetic alterations in cholangiocarcinoma. J Hepatobiliary Pancreat Surg. 2006;13:274–9.

    Article  PubMed  Google Scholar 

  49. Jung Y, McCall SJ, Li YX, et al. Bile ductules and stromal cells express hedgehog ligands and/or hedgehog target genes in primary biliary cirrhosis. Hepatology. 2007;45:1091–6.

    Article  PubMed  Google Scholar 

  50. Dechaphunkul A, Kanngurn S, Dechsukhum C, et al. The significance of galectin-3 immunohistochemistry, clinical characteristics and liver imaging in differentiating intrahepatic cholangiocarcinoma from adenocarcinoma liver metastasis. J Med Assoc Thai. 2010;93:523–8.

    PubMed  Google Scholar 

  51. Romani AA, Soliani P, Desenzani S, et al. The associated expression of Maspin and Bax proteins as a potential prognostic factor in intrahepatic cholangiocarcinoma. BMC Cancer. 2006;6:255–8.

    Article  PubMed  Google Scholar 

  52. Fiorentino M, Altimari A, D’Errico A, et al. Low p27 expression is an independent predictor of survival for patients with either hilar or peripheral intrahepatic cholangiocarcinoma. Mod Pathol. 2001;14:900–5.

    Article  Google Scholar 

  53. Huang YC, Chen M, Shyr YM, et al. Glycine N-methyltransferase is a favorable prognostic marker for human cholangiocarcinoma. J Gastroenterol Hepatol. 2008;23:1384–9.

    Article  PubMed  Google Scholar 

  54. Nuzzo G, Giuliante F, Ardito F, et al. Intrahepatic cholangiocarcinoma: prognostic factors after liver resection. Updates Surg. 2010;62:11–9.

    Article  PubMed  Google Scholar 

  55. Zhang F, Chen XP, Zhang W, et al. Combined hepatocellular cholangiocarcinoma originating from hepatic progenitor cells: immunohistochemical and double-fluorescence immunostaining evidence. Histopathology. 2008;52:224–32.

    Article  PubMed  CAS  Google Scholar 

  56. Charatcharoenwitthaya P, Enders FB, Halling KC, et al. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology. 2008;48:1106–17.

    Article  PubMed  CAS  Google Scholar 

  57. Juntermanns B, Radunz S, Heuer M, et al. Tumor markers as a diagnostic key for hilar cholangiocarcinoma. Eur J Med Res. 2010;20(15):357–61.

    Article  Google Scholar 

  58. Patel AH, Harnois DM, Klee GG, et al. The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol. 2000;95:204–7.

    Article  PubMed  CAS  Google Scholar 

  59. Hatzaras I, Schmidt C, Muscarella P, et al. Elevated CA 19-9 ­portends poor prognosis in patients undergoing resection of biliary malignancies. HPB (Oxford). 2010;12:134–8.

    Article  Google Scholar 

  60. Morris-Stiff G, Teli M, Jardine N, et al. CA19-9 antigen levels can distinguish between benign and malignant pancreaticobiliary ­disease. Hepatobiliary Pancreat Dis Int. 2009;8:620–6.

    PubMed  CAS  Google Scholar 

  61. Furmanczyk PS, Grieco VS, Agoff SN. Biliary brush cytology and the detection of cholangiocarcinoma in primary sclerosing cholangitis: evaluation of specific cytomorphologic features and CA19-9 levels. Am J Clin Pathol. 2005;124:355–60.

    Article  PubMed  Google Scholar 

  62. Yuan SF, Li KZ, Wang L, et al. Expression of MUC1 and its significance in hepatocellular and cholangiocarcinoma tissue. World J Gastroenterol. 2005;11:4661–6.

    PubMed  CAS  Google Scholar 

  63. Bamrungphon W, Prempracha N, Bunchu N, et al. A new mucin antibody/enzyme-linked lectin-sandwich assay of serum MUC5AC mucin for the diagnosis of cholangiocarcinoma. Cancer Lett. 2007;247:301–8.

    Article  PubMed  CAS  Google Scholar 

  64. Boonla C, Sripa B, Thuwajit P, et al. MUC1 and MUC5AC mucin expression in liver fluke-associated intrahepatic cholangiocarcinoma. World J Gastroenterol. 2005;11:4939–46.

    PubMed  CAS  Google Scholar 

  65. Leelawat K, Sakchinabut S, Narong S, et al. Detection of serum MMP-7 and MMP-9 in cholangiocarcinoma patients: evaluation of diagnostic accuracy. BMC Gastroenterol. 2009;9:30–3.

    Article  PubMed  Google Scholar 

  66. Zhou YM, Yang JM, Li B, et al. Clinicopathologic characteristics of intrahepatic cholangiocarcinoma in patients with positive serum a-fetoprotein. World J Gastroenterol. 2008;14:2251–4.

    Article  PubMed  CAS  Google Scholar 

  67. Ishikawa K, Sasaki A, Haraguchi N, et al. A case of an alpha-­fetoprotein-producing intrahepatic cholangiocarcinoma suggests probable cancer stem cell origin. Oncologist. 2007;12:320–4.

    Article  PubMed  CAS  Google Scholar 

  68. Wiedmann MW, Mössner J. Molecular targeted therapy of biliary tract cancer–results of the first clinical studies. Curr Drug Targets. 2010;11:834–50.

    Article  PubMed  CAS  Google Scholar 

  69. Lubner SJ, Mahoney MR, Kolesar JL, et al. Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II Consortium study. J Clin Oncol. 2010;28:3491–7.

    Article  PubMed  CAS  Google Scholar 

  70. Qun W, Tao Y. Effective treatment of advanced cholangiocarcinoma by hepatic arterial infusion chemotherapy combination with sorafenib: one case report from China. Hepatogastroenterology. 2010;57:426–9.

    PubMed  Google Scholar 

  71. Francis H, Alpini G, DeMorrow S. Recent advances in the regulation of cholangiocarcinoma growth. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1–9.

    Article  PubMed  CAS  Google Scholar 

  72. Tonini G, Virzì V, Fratto ME, et al. Targeted therapy in biliary tract cancer: 2009 update. Future Oncol. 2009;5:1675–84.

    Article  PubMed  CAS  Google Scholar 

  73. Zhang Z, Oyesanya RA, Campbell DJ, et al. Preclinical assessment of simultaneous targeting of epidermal growth factor receptor (ErbB1) and ErbB2 as a strategy for cholangiocarcinoma therapy. Hepatology. 2010;52:975–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. H. Chan PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht and People's Medical Publishing House

About this chapter

Cite this chapter

Chan, J.Y.H., Lee, K.K.H., Chui, Y.L. (2013). Molecular Markers of Cholangiocarcinoma. In: Lau, W. (eds) Hilar Cholangiocarcinoma. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6473-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6473-6_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6472-9

  • Online ISBN: 978-94-007-6473-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics