Skip to main content

Catecholamine Neurotransmitters: An Angiogenic Switch in the Tumor Microenvironment

  • Chapter
  • First Online:
Angiogenesis Modulations in Health and Disease

Abstract

Angiogenesis, or new blood vessel formation, is necessary for the growth and progression of malignant tumors. Among the endogenous regulators of angiogenesis, catecholamines have recently drawn attention owing to the discovery that they have opposing roles in regulating tumor angiogenesis. Dopamine (DA), norepinephrine (NE), and epinephrine (E) are the members of the catecholamine family. DA suppresses tumor angiogenesis and hence inhibits tumor growth, whereas NE and E increase tumor growth by promoting angiogenesis in tumor tissues. Therefore, on the whole, catecholamines function as an angiogenic switch. These neurotransmitters act upon their target cells via specific receptors, exerting pro- or anti-angiogenic effects, and thus are excellent targets for the regulation of tumor angiogenesis by dopaminergic or adrenergic receptor agonists or antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    PubMed  CAS  Google Scholar 

  2. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  3. Dvorak HF (2005) Angiogenesis: update 2005. J Thromb Haemost 3:1835–1842

    Article  PubMed  CAS  Google Scholar 

  4. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  5. Kopp HG, Ramos CA, Rafii S (2006) Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 13:175–181

    Article  PubMed  CAS  Google Scholar 

  6. Moserle L, Amadori A, Indraccolo S (2009) The angiogenic switch: implications in the regulation of tumor dormancy. Curr Mol Med 9:935–941

    Article  PubMed  CAS  Google Scholar 

  7. Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5:1779–1787

    Article  PubMed  CAS  Google Scholar 

  8. Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19:329–337

    Article  PubMed  CAS  Google Scholar 

  9. Cai J, Han S, Qing R et al (2011) In persuit of new anti-angiogenic therapies for cancer treatment. Front Biosci 16:803–814

    Article  PubMed  CAS  Google Scholar 

  10. Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29:789–791

    Article  PubMed  CAS  Google Scholar 

  11. Laverty R (1978) Catecholamines: role in health and disease. Drugs 16:418–440

    Article  PubMed  CAS  Google Scholar 

  12. Antoni MH, Lutgendorf SK, Cole SW et al (2006) The influence of bio-behavioral factors on tumor biology: pathways and mechanisms. Nat Rev Cancer 6:240–248

    Article  PubMed  CAS  Google Scholar 

  13. Chakroborty D, Sarkar C, Basu B et al (2009) Catecholamines regulate tumor angiogenesis. Cancer Res 69:3727–3730

    Article  PubMed  CAS  Google Scholar 

  14. Tilan J, Kitlinska J (2010) Sympathetic neurotransmitters and tumor angiogenesis-link between stress and cancer progression. J Oncol 2010:539706. doi:10.1155/2010/539706

    Article  PubMed  Google Scholar 

  15. Hasegawa H, Saiki I (2002) Psychosocial stress augments tumor development through beta-adrenergic activation in mice. Jpn J Cancer Res 93:729–735

    Article  PubMed  CAS  Google Scholar 

  16. Thaker PH, Sood AK (2008) Neuroendocrine influence on cancer biology. Semin Cancer Biol 18:164–170

    Article  PubMed  CAS  Google Scholar 

  17. Thaker PH, Lutgendorf SK, Sood AK (2007) The neuroendocrine impact of chronic stress on cancer. Cell Cycle 6:430–433

    Article  PubMed  CAS  Google Scholar 

  18. Armaiz-Pena GN, Lutgendorf SK, Cole SW, Sood AK (2009) Neuroendocrine modulation of cancer progression. Brain Behav Immun 23:10–15

    Article  PubMed  CAS  Google Scholar 

  19. Thaker PH, Han LY, Kamat AA et al (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939–944

    Article  PubMed  CAS  Google Scholar 

  20. Lutgendorf SK, Cole S, Costanzo E et al (2003) Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res 9:4514–4521

    PubMed  CAS  Google Scholar 

  21. Lutgendorf SK, Lamkin DM, Jennings NB (2008) Biobehavioral influences on matrix metalloproteinase expression in ovarian carcinoma. Clin Cancer Res 14:6839–6846

    Article  PubMed  CAS  Google Scholar 

  22. Yang EV, Kim SJ, Donovan EL et al (2009) Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 23:267–275

    Article  PubMed  CAS  Google Scholar 

  23. Yang EV, Sood AK, Chen M et al (2006) Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 66:10357–10364

    Article  PubMed  CAS  Google Scholar 

  24. Nilsson MB, Armaiz-Pena GN, Takahashi R et al (2007) Stress hormones regulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism. J Biol Chem 282:29919–29926

    Article  PubMed  CAS  Google Scholar 

  25. Wong HP, Yu L, Lam EK et al (2007) Nicotine promotes colon tumor growth and angiogenesis through beta-adrenergic activation. Toxicol Sci 97:279–287

    Article  PubMed  CAS  Google Scholar 

  26. Seya Y, Fukuda T, Isobe K et al (2006) Effect of norepinephrine on RhoA, MAP kinase, proliferation and VEGF expression in human umbilical vein endothelial cells. Eur J Pharmacol 553:54–60

    Article  PubMed  CAS  Google Scholar 

  27. Yang EV, Donovan EL, Benson DM, Glaser R (2008) VEGF is differentially regulated in multiple myeloma-derived cell lines by norepinephrine. Brain Behav Immun 22:318–323

    Article  PubMed  Google Scholar 

  28. Park SY, Kang JH, Jeong KJ et al (2011) Norepinephrine induces VEGF expression and angiogenesis by a hypoxia-inducible factor-1α protein-dependent mechanism. Int J Cancer 128:2306–2316

    Article  PubMed  CAS  Google Scholar 

  29. Landen CN Jr, Lin YG, Armaiz Pena GN et al (2007) Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Res 67:10389–10396

    Article  PubMed  CAS  Google Scholar 

  30. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  PubMed  CAS  Google Scholar 

  31. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  32. Rubi B, Maechler P (2010) Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance. Endocrinology 151:5570–5581

    Article  PubMed  CAS  Google Scholar 

  33. Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124

    Article  PubMed  CAS  Google Scholar 

  34. Sarkar C, Basu B, Chakroborty D et al (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24:525–528

    Article  PubMed  CAS  Google Scholar 

  35. Basu S, Nagy JA, Pal S et al (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7:569–574

    Article  PubMed  CAS  Google Scholar 

  36. Teunis MA, Kavelaars A, Voest E et al (2002) Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J 16:1465–1467

    PubMed  CAS  Google Scholar 

  37. Basu S, Sarkar C, Chakroborty D et al (2004) Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res 64:5551–5555

    Article  PubMed  CAS  Google Scholar 

  38. Chakroborty D, Sarkar C, Mitra RB et al (2004) Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin Cancer Res 10:4349–4356

    Article  PubMed  CAS  Google Scholar 

  39. Sarkar C, Chakroborty D, Mitra RB et al (2004) Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am J Physiol Heart Circ Physiol 287:H1554–H1560

    Article  PubMed  CAS  Google Scholar 

  40. Sarkar C, Chakraborty D, Chowdhury UR et al (2008) Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin Cancer Res 14:2502–2510

    Article  PubMed  CAS  Google Scholar 

  41. Chakroborty D, Chowdhury UR, Sarkar C et al (2008) Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J Clin Invest 118:1380–1389

    Article  PubMed  CAS  Google Scholar 

  42. Gao D, Nolan D, McDonnell K et al (2009) Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 1796:33–40

    PubMed  CAS  Google Scholar 

  43. Marino F, Cosentino M, Bombelli R et al (1997) Measurement of catecholamines in mouse bone marrow by means of HPLC with electrochemical detection. Haematologica 82:392–394

    PubMed  CAS  Google Scholar 

  44. Friedman GD, Udaltsova N, Habel LA (2011) Norepinephrine antagonists and cancer risk. Int J Cancer 128:737–738

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Basu, S., Dasgupta, P.S. (2013). Catecholamine Neurotransmitters: An Angiogenic Switch in the Tumor Microenvironment. In: Mousa, S., Davis, P. (eds) Angiogenesis Modulations in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6467-5_7

Download citation

Publish with us

Policies and ethics