Integrin Antagonists and Angiogenesis

  • Shaker A. Mousa
  • Paul J. Davis


Integrins and associated extracellular matrix protein ligands participate in angiogenesis, thrombosis, apoptosis, cell migration and proliferation. Disorders of such processes lead to acute and chronic disease states such as ocular diseases, cancer metastasis, unstable angina, myocardial infarction, stroke, osteoporosis, a wide range of inflammatory diseases, vascular remodeling and neurodegenerative disorders. Progress has been substantial in the development of antagonists for αvβ3, αvβ5, and αvβ1 integrins to modulate angiogenesis and blood vessel-related disorders. Several reports illustrate existence of crosstalk between integrins and various hormonal systems. The expression of αv integrin on distinct cell types contributes to cancer growth, and αv integrin antagonists have the potential to disrupt multiple aspects of cancer and blood vessel disease progression. The rationale for the development of various therapeutic and diagnostic candidate anti-integrin agents is reviewed here, as are nanoparticle delivery systems directed at specific sites on integrins.


Single Photon Emission Compute Tomography Thyroid Hormone Peptide Antagonist Position Emission Tomography Human Serum Albumin Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hwang DS, Sim SB, Cha HJ (2007) Cell adhesion biomaterial based on mussel adhesive protein fused with RGD peptide. Biomaterials 28:4034–4046Google Scholar
  2. 2.
    Ruoslahti E (2003) The RGD, story: a personal account. Matrix Biol 22:459–465PubMedCrossRefGoogle Scholar
  3. 3.
    Ruoslahti E, Pierschbacher M (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497PubMedCrossRefGoogle Scholar
  4. 4.
    Ruoslahti E, Pierschbacher M (1986) ARG-GLY-ASP: a versatile cell recognition sequence. Cell 44:517–518PubMedCrossRefGoogle Scholar
  5. 5.
    Hynes RO (1992) Integrins: versatility, modulation and signaling in cell adhesion. Cell 69:11–25PubMedCrossRefGoogle Scholar
  6. 6.
    Cox D, Aoki T, Seki J, Motoyama Y, Yoshida K (1994) The pharmacology of the integrins. Med Res Rev 14(2):195–228PubMedCrossRefGoogle Scholar
  7. 7.
    Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4:2868–2880PubMedGoogle Scholar
  8. 8.
    Cheresh D (1993) Integrins: structure, function and biological properties. Adv Mol Cell Biol 6:225–252CrossRefGoogle Scholar
  9. 9.
    Guadagno TM, Ohtsubo M, Roberts JM et al (1993) A link between cyclin A expression and adhesion dependent cell cycle proliferation. Science 262:1572–1575PubMedCrossRefGoogle Scholar
  10. 10.
    Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120:577–585PubMedCrossRefGoogle Scholar
  11. 11.
    Kornberg LJ, Earb HS, Turner CE et al (1991) Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of β1 integrins. Proc Natl Acad Sci USA 88:8392–8395PubMedCrossRefGoogle Scholar
  12. 12.
    Kornberg L, Earp HS, Parsons JT et al (1992) Cell adhesion or integrin clustering increased phorphorylation of a focal adhesion associated kinase. J Biol Chem 117:1101–1107Google Scholar
  13. 13.
    Guan JL, Salloway D (1992) Regulation of focal adhesion associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358:690–692PubMedCrossRefGoogle Scholar
  14. 14.
    Pelletier AJ, Bodary SX, Levinson AD (1992) Signal transduction by the platelet integrin αIIbβ3: induction of calcium oscillations required for protein-tyrosine phosphorylation and ligand-induced spreading of stably transfected cells. Mol Biol Cell 3:989–998PubMedGoogle Scholar
  15. 15.
    Vinogradova O, Velyvis A, Velyviene A, Hu B, Haas T, Plow E, Qin J (2002) A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 110(5):587–597PubMedCrossRefGoogle Scholar
  16. 16.
    Topol EJ, Califf RM, Weisman HF et al (1994) Randomised trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. Lancet 343:881–886PubMedCrossRefGoogle Scholar
  17. 17.
    The EPIC Investigators (1994) Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. The EPIC Investigation. N Engl J Med 330:956–961CrossRefGoogle Scholar
  18. 18.
    Mousa SA (1999) Antiplatelet therapies: from aspirin to GPIIb/IIIa receptor antagonists and beyond. Drug Discov Today 4(12):552–561PubMedCrossRefGoogle Scholar
  19. 19.
    Ma YQ, Qin J (2007) Plow EFPlatelet integrin alpha(IIb)beta(3): activation mechanisms. J Thromb Haemost 5(7):1345–1352PubMedCrossRefGoogle Scholar
  20. 20.
    Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA (1988) Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 52:925–929PubMedCrossRefGoogle Scholar
  21. 21.
    Romo GM, Dong J, Schade AJ, Gardiner EE, Kansas GS, Li CQ, McIntire LV, Berndt MC, Lopez JA (1999) The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 190:803–814PubMedCrossRefGoogle Scholar
  22. 22.
    San Antonio JD, Zoeller JJ, Habursky K, Turner K, Pimtong W, Burrows M, Choi S, Basra S, Bennett JS, DeGrado WF, Iozzo RV (2009) A key role for the integrin alpha2beta1 in experimental and developmental angiogenesis. Am J Pathol 175(3):1338–1347PubMedCrossRefGoogle Scholar
  23. 23.
    Funahashi Y, Sugi NH, Semba T, Yamamoto Y, Hamaoka S, Tsukahara-Tamai N, Ozawa Y, Tsuruoka A, Nara K, Takahashi K, Okabe T, Kamata J, Owa T, Ueda N, Haneda T, Yonaga M, Yoshimatsu K, Wakabayashi T (2002) Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin alpha2 subunit on endothelium. Cancer Res 62(21):6116–6123PubMedGoogle Scholar
  24. 24.
    Furrer J, Luy B, Basrur V, Roberts DD, Barchi JJ Jr (2006) Conformational analysis of an alpha3beta1 integrin-binding peptide from thrombospondin-1: implications for antiangiogenic drug design. J Med Chem 49(21):6324–6333PubMedCrossRefGoogle Scholar
  25. 25.
    Magnusson MK, Mosher DF (1998) Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler Thromb Vasc Biol 18:1363–1370PubMedCrossRefGoogle Scholar
  26. 26.
    Clark RA, Dellapelle P, Manseua E, Lanigan JM, Dvorak HF, Colvin RB (1982) Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary in growth during wound healing. J Invest Dermatol 79:269–276PubMedCrossRefGoogle Scholar
  27. 27.
    Neri D, Carnimolla B, Nissim A et al (1997) Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 15:1271–1275PubMedCrossRefGoogle Scholar
  28. 28.
    George EL, Georges EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesodermal migration and vascular development in fibronectin-deficient mice. Development 119:1079–1091PubMedGoogle Scholar
  29. 29.
    Klein S, de Fougerolles AR, Blaikie P, Khan L, Pepe A, Green CD, Koteliansky V, Giancotti FG (2002) α5β1 integrin activates an NF-κB-dependent program of gene expression important for angiogenesis and inflammation. Mol Cell Biol 22(16):5912–5922PubMedCrossRefGoogle Scholar
  30. 30.
    Varner J, Mousa S (1998) Antagonists of vascular cell integrin α5β1 inhibit angiogenesis. Circulation 98(17 Suppl 1):1–795. 4166Google Scholar
  31. 31.
    Mousa S, Mohamed S, Sallhear J, Jadhav PK, Varner J (1999) Anti-angiogenesis efficacy of small molecule a5b1 integrin antagonist, SJ749. Blood 94(10 Suppl I):620a. 2755Google Scholar
  32. 32.
    Umeda N, Kachi S, Akiyama H, Zahn G, Vossmeyer D, Stragies R, Campochiaro PA (2006) Suppression and regression of choroidal neovascularization by systemic administration of an alpha5beta1 integrin antagonist. Mol Pharmacol 69(6):1820–1828PubMedCrossRefGoogle Scholar
  33. 33.
    Raboisson P, Manthey CL, Chaikin M, Lattanze J, Crysler C, Leonard K, Pan W, Tomczuk BE, Marugán JJ (2006) Novel potent and selective alphavbeta3/alphavbeta5 integrin dual antagonists with reduced binding affinity for human serum albumin. Eur J Med Chem 41:847–861PubMedCrossRefGoogle Scholar
  34. 34.
    Benfatti F, Cardillo G, Fabbroni S, Galzerano P, Gentilucci L, Juris R, Tolomelli A, Baiula M, Spartà A, Spampinato S (2007) Synthesis and biological evaluation of non-peptide alpha(v)beta(3)/alpha(5)beta(1) integrin dual antagonists containing 5,6-dihydropyridin-2-one scaffolds. Bioorg Med Chem 15:7380–7390PubMedCrossRefGoogle Scholar
  35. 35.
    Albelda SM, Mette SA, Elder DE et al (1990) Integrin distribution in malignant melanoma: association of the b3 subunit with tumor progression. Cancer Res 50:6757–6764PubMedGoogle Scholar
  36. 36.
    Nip J, Brondt P (1995) The role of the integrin vitronectin receptor avb3 in melanoma metastasis. Cancer Metastasis Rev 14:241–252PubMedCrossRefGoogle Scholar
  37. 37.
    Pechkovsky DV, Scaffidi AK, Hackett TL, Ballard J, Shaheen F, Thompson PJ, Thannickal VJ, Knight DA (2008) Transforming growth factor beta1 induces alphavbeta3 integrin expression in human lung fibroblasts via a beta3 integrin-, c-Src-, and p38 MAPK-dependent pathway. J Biol Chem 283(19):12898–12908PubMedCrossRefGoogle Scholar
  38. 38.
    Srivatsa SS, Tsao P, Holmes DR, Schwartz RS, Mousa SA (1997) Selective αvβ3 integrin blockade potently limits neointimal hyperplasia and lumen stenosis following deep coronary arterial stent injury. Cardiovasc Res 36:408–428PubMedCrossRefGoogle Scholar
  39. 39.
    Zee R, Passeri J, Barry J, Cheresh D, Isner J (1996) A neutralizing antibody to the avb3 integrin reduces neointimal thickening in a balloon-injured iliac artery. Circulation 94(8):1505Google Scholar
  40. 40.
    Coleman PJ, Brashear KM, Askew BC, Hutchinson JH, McVean CA, Duong LT, Feuston BP, Fernandez-Metzler C, Gentile MA, Hartman GD, Kimmel DB, Leu C-T, Lipfert L, Merkle K, Pennypacker B, Prueksaritanont T, Rodan GA, Wesolowski GA, Rodan SB, Duggan ME (2004) Nonpeptide αvβ3 antagonists. Part 11: discovery and preclinical evaluation of potent αvβ3 antagonists for the prevention and treatment of osteoporosis. J Med Chem 47:4829–4837PubMedCrossRefGoogle Scholar
  41. 41.
    Whitman DB, Askew BC, Duong LT, Fernandez-Metzler C, Halczenko W, Hartman GD, Hutchinson JH, Leu C-T, Prueksaritanont T, Rodan GA, Rodan SB, Duggan ME (2004) Nonpeptide αvβ3 antagonists. Part 9: improved pharmacokinetic profile through the use of an aliphatic, des-amide backbone. Bioorg Med Chem Lett 14:4411–4415PubMedCrossRefGoogle Scholar
  42. 42.
    Perkins JJ, Duong LT, Fernandez-Metzler C, Hartman GD, Kimmel DB, Leu C-T, Lynch JJ, Prueksaritanont T, Rodan GA, Rodan SB, Duggan ME, Meissner RS (2003) Non-peptide αvβ3 antagonists: identification of potent, chain-shortened RGD mimetics that incorporate a central pyrrolidinone constraint. Bioorg Med Chem Lett 13:4285–4288PubMedCrossRefGoogle Scholar
  43. 43.
    Breslin MJ, Duggan ME, Halczenko W, Hartman GD, Duong LT, Fernandez-Metzler C, Gentile MA, Kimmel DB, Leu C-T, Merkle K, Prueksaritanont T, Rodan GA, Rodan SB, Hutchinson JH (2004) Nonpeptide αvβ3 antagonists. Part 10: in vitro and in vivo evaluation of a potent 7-methyl substituted tetrahydro-[1,8]naphthyridine derivative. Bioorg Med Chem Lett 14:4515–4518PubMedCrossRefGoogle Scholar
  44. 44.
    Hutchinson JH, Halczenko W, Brashear KM, Breslin MJ, Coleman PJ, Duong LT, Fernandez-Metzler C, Gentile MA, Fisher JE, Hartman GD, Huff JR, Kimmel DB, Leu C-T, Meissner RS, Merkle K, Nagy R, Pennypacker B, Perkins JJ, Prueksaritanont T, Rodan GA, Varga SL, Wesolowski GA, Zartman AE, Rodan SB, Duggan ME (2003) Nonpeptide αvβ3 antagonists. 8. In vitro and in vivo evaluation of a potent v3 antagonist for the prevention and treatment of osteoporosis. J Med Chem 46:4790–4798PubMedCrossRefGoogle Scholar
  45. 45.
    Bubenik M, Meerovitch K, Bergeron F, Attardo G, Chan L (2003) Thiophene-based vitronectin receptor antagonists. Bioorg Med Chem Lett 13:503–506PubMedCrossRefGoogle Scholar
  46. 46.
    Meerovitch K, Bergeron F, Leblond L, Grouix B, Poirier C, Bubenik M, Chan L, Gourdeau H, Bowlin T, Attardo G (2003) A novel RGD antagonist that targets both avß3 and a5ß1 induces apoptosis of angiogenic endothelial cells on type I collagen. Vascul Pharmacol 40:77–89PubMedCrossRefGoogle Scholar
  47. 47.
    Cacciari B, Spalluto G (2005) Non peptidic αvβ3 antagonists: recent developments. Curr Med Chem 12:51–70PubMedCrossRefGoogle Scholar
  48. 48.
    Ishikawa M, Kubota D, Yamamoto M, Kuroda C, Iguchi M, Koyanagi A, Murakami S, Ajito K (2006) Tricyclic pharmacophore-based molecules as novel integrin αvβ3 antagonists. Part 2: synthesis of potent αvβ3/αIIbβ3 dual antagonists. Bioorg Med Chem 14:2109–2130PubMedCrossRefGoogle Scholar
  49. 49.
    Urbahns K, Härter M, Albers M, Schmidt D, Stelte-Ludwig B, Brüggemeier U, Vaupel A, Gerdes C (2002) Biphenyls as potent vitronectin receptor antagonists. Bioorg Med Chem Lett 12:205–208PubMedCrossRefGoogle Scholar
  50. 50.
    Ishikawa M, Hiraiwa Y, Kubota D, Tsushima M, Watanabe T, Murakami S, Ouchi S, Ajito K (2006) Tricyclic pharmacophore-based molecules as novel integrin αvβ3 antagonists. Part III: synthesis of potent antagonists with αvβ3/αIIbβ3 dual activity and improved water solubility. Bioorg Med Chem 14:2131–2150PubMedCrossRefGoogle Scholar
  51. 51.
    Penning TD, Russell MA, Chen BB, Chen HY, Desai BN, Docter SH, Edwards DJ, Gesicki GJ, Liang C-D, Malecha JW, Yu SS, Engleman VW, Freeman SK, Hanneke ML, Shannon KE, Westlin MM, Nickols GA (2004) Synthesis of cinnamic acids and related isosteres as potent and selective αvβ3 receptor antagonists. Bioorg Med Chem Lett 14:1471–1476PubMedCrossRefGoogle Scholar
  52. 52.
    Iwama S, Kitano T, Fukuya F, Honda Y, Sato Y, Notake M, Morie T (2004) Discovery of a potent and selective αvβ3 integrin antagonist with strong inhibitory activity against neointima formation in rat balloon injury model. Bioorg Med Chem Lett 14:2567–2570PubMedGoogle Scholar
  53. 53.
    Lange UEW, Backfisch G, Delzer J, Geneste H, Graef C, Hornberger W, Kling A, Lauterbach A, Subkowski T, Zechel C (2002) Synthesis of highly potent and selective hetaryl ureas as integrin αvβ3-Receptor antagonists. Bioorg Med Chem Lett 12:1379–1382PubMedCrossRefGoogle Scholar
  54. 54.
    Dayam R, Aiello F, Deng J, Wu Y, Garofalo A, Chen X, Neamati N (2006) Discovery of small molecule integrin αvβ3 antagonists as novel anticancer agents. J Med Chem 49:4526–4534PubMedCrossRefGoogle Scholar
  55. 55.
    Wilkinson-Berka JL, Jones D, Taylor G, Jaworski K, Kelly DJ, Ludbrook SB, Willette RN, Kumar S, Gilbert RE (2006) SB-267268, a nonpeptidic antagonist of alpha(v)beta3 and alpha(v)beta5 integrins, reduces angiogenesis and VEGF expression in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 47(4):1600–1605PubMedCrossRefGoogle Scholar
  56. 56.
    Arosio D, Belvisi L, Colombo L, Colombo M, Invernizzi D, Manzoni L, Potenza D, Serra M, Castorina M, Pisano C, Scolastico C (2008) A potent integrin antagonist from a small library of cyclic RGD pentapeptide mimics including benzyl-substituted azabicycloalkane amino acids. ChemMedChem 3(10):1589–1603PubMedCrossRefGoogle Scholar
  57. 57.
    Perron-Sierra F, Saint Dizier D, Bertrand M, Genton A, Tucker GC, Casara P (2002) Substituted benzocyloheptenes as potent and selective αv integrin antagonists. Bioorg Med Chem Lett 12:3291–3296PubMedCrossRefGoogle Scholar
  58. 58.
    Nadrah K, Dolenc MS (2005) Dual antagonists of integrins. Curr Med Chem 12:1449–1466PubMedCrossRefGoogle Scholar
  59. 59.
    Raboisson P, DesJarlais RL, Reed R, Lattanze J, Chaikin M, Manthey CL, Tomczuk BE, Marugan JJ (2007) Identification of novel short chain 4-substituted indoles as potent antagonist using structure-based drug design. Eur J Med Chem 42:334–343PubMedCrossRefGoogle Scholar
  60. 60.
    Hutchinson JH, Halczenko W, Brashear KM et al (2003) Nonpeptide alphavbeta3 antagonists. 8. In vitro and vivo evaluation of a potent alphavbeta3 antagonist for the prevention and treatment of osteoporosis. J Med Chem 46:4790–4798PubMedCrossRefGoogle Scholar
  61. 61.
    Horton MA, Taylor ML, Arnett TR, Helfrich MH (1991) Arg-Gly-Asp (RGD) peptides and the antivitronectin receptor antibody 23C6 inhibit dentine resorption and cell spreading by osteoclasts. Exp Cell Res 195:368–375PubMedCrossRefGoogle Scholar
  62. 62.
    Keenan RM, Miller WH, Kwon C et al (1997) Discovery of potent non-peptide vitronectin αvβ3 antagonists. J Med Chem 40:2289–2292PubMedCrossRefGoogle Scholar
  63. 63.
    Corbett JW, Graciani NR, Mousa SA, Degrado WF (1997) Solid-phase synthesis of a selective αvβ3 integrin antagonist library. Bioorg Med Chem Lett 7:1371–1376CrossRefGoogle Scholar
  64. 64.
    Knolle J, Breiphol G, Guba W et al (1997) Design and synthesis of potent and selective peptidomimetic vitronectin receptor antagonists. In: Tam JP, Kaumaya TP (eds) Peptide chemistry structure and biology. Proceedings of the 15th American peptide symposium, Mayflower Scientific Ltd, Kingswinford, England, Abstract L102Google Scholar
  65. 65.
    Kerr JS, Wexler RS, Mousa SA et al (1999) Novel small molecule αv integrin antagonists: comparative anti-cancer efficacy with known angiogenesis inhibitors. Anticancer Res 19:959–968PubMedGoogle Scholar
  66. 66.
    Mousa SA, Lorelli W, Mohamed S, Batt DG, Jadhav PK, Reilly TM (1999) αvβ3 Integrin binding affinity and specificity of SM256 in various species. J Cardiovasc Pharmacol 33:641–646PubMedCrossRefGoogle Scholar
  67. 67.
    Shimamura N, Matchett G, Yatsushige H, Ohkuma H, Zhang J (2006) Inhibition of integrin alphavbeta3 ameliorates focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Stroke 37(7):1902–1909PubMedCrossRefGoogle Scholar
  68. 68.
    Penning TD, Khilevich A, Chen BB, Russell MA, Boys ML, Wang Y, Duffin T, Engleman VW, Finn MB et al (2006) Synthesis of pyrazoles and isoxazoles as potent alpha(v)beta3 receptor antagonists. Bioorg Med Chem Lett 16(12):3156–3161PubMedCrossRefGoogle Scholar
  69. 69.
    Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin αvβ3 for angiogenesis. Science 264:569–571PubMedCrossRefGoogle Scholar
  70. 70.
    Sanders LC, Felding-Habermann B, Mueller BM et al (1992) Role of αv integrins and vitronectin in human melanoma cell growth. Cold Spring Harb Symp Quant Biol 57:233–240CrossRefGoogle Scholar
  71. 71.
    Brooks PC, Strömbland S, Klemke R et al (1995) Anti-integrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96:1815–1822PubMedCrossRefGoogle Scholar
  72. 72.
    Hieken TJ, Farolan M, Ronan SG et al (1996) β3 integrin expression in melanoma predicts subsequent metastasis. J Surg Res 63:169–173PubMedCrossRefGoogle Scholar
  73. 73.
    Max R, Gerritsen R, Nooijen P et al (1997) Immunohistochemical analysis of integrin αvβ3 expression on tumor-associated vessels of human carcinomas. Int J Cancer 71:320–324PubMedCrossRefGoogle Scholar
  74. 74.
    Clark RA, Tonnesen MG, Gailit J et al (1996) Transient functional expression of alphaVbeta 3 on vascular cells during wound repair. Am J Pathol 148:1407–1421PubMedGoogle Scholar
  75. 75.
    Eliceiri BP, Klemke R, Strömbland S, Cheresh DA (1999) Integrin αvβ3 requirement for sustained mitogenactivated protein kinase activity during angiogenesis. J Cell Biol 140:1255–1263Google Scholar
  76. 76.
    Friedlander M, Brooks PC, Shaffer RW et al (1995) Definition of two angiogenic pathways by distinct αv integrins. Science 270:1500–1502CrossRefGoogle Scholar
  77. 77.
    Eliceiri BP, Cheresh DA (1999) The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103:1227–1230PubMedCrossRefGoogle Scholar
  78. 78.
    Luna J, Tobe T, Mousa SA et al (1996) Antagonists of integrin αvβ3 inhibit retinal neovascularization in a murine model. Lab Invest 75:563–573PubMedGoogle Scholar
  79. 79.
    Ogawara K, Kułdo JM, Oosterhuis K, Kroesen BJ, Rots MG, Trautwein C, Kimura T, Haisma HJ, Molema G (2006) Functional inhibition of NF-kappaB signal transduction in alphavbeta3 integrin expressing endothelial cells by using RGD-PEG-modified adenovirus with a mutant IkappaB gene. Arthritis Res Ther 8(1):R32PubMedCrossRefGoogle Scholar
  80. 80.
    Curnis F, Sacchi A, Gasparri A, Longhi R, Bachi A, Doglioni C, Bordignon C, Traversari C, Rizzardi GP, Corti A (2008) Isoaspartate-glycine-arginine: a new tumor vasculature-targeting motif. Cancer Res 68(17):7073–7082PubMedCrossRefGoogle Scholar
  81. 81.
    Zhao H, Wang JC, Sun QS, Luo CL, Zhang Q (2009) RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer. J Drug Target 17(1):10–18PubMedCrossRefGoogle Scholar
  82. 82.
    Garanger E, Boturyn D, Dumy P (2007) Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med Chem 7(5):552–558PubMedCrossRefGoogle Scholar
  83. 83.
    Wu Z, Li ZB, Chen K, Cai W, He L, Chin FT, Li F, Chen X (2007) micro PET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18 F-FPRGD4). J Nucl Med 48(9):1536–1544PubMedCrossRefGoogle Scholar
  84. 84.
    Lin H-Y, Davis FB, Gordinier JK, Martino LJ, Davis PJ (2001) Thyroid hormone induces activation of mitogen-activated protein kinase. Am J Physiol 276:C1014–C1024Google Scholar
  85. 85.
    Hercbergs AA, Goyal LK, Suh JH, Lee S, Reddy CA, Cohen BH, Stevens GH, Reddy SK, Peereboom DM, Elson PJ, Gupta MK, Barnett GH (2003) Propylthiouracil-induced chemical hypothyroidism with high-dose tamoxifen prolongs survival in recurrent high grade glioma: a Phase I/II study. Anticancer Res 23:617–626PubMedGoogle Scholar
  86. 86.
    Cristofanilli M, Yamamura Y, Kau S-W, Bevers T, Strom S, Patangan M, Hsu L, Krishnamurthy S, Theriault RL, Hortobagyi GN (2005) Thyroid hormone and breast carcinoma. Primary hypothyroidism is associated with a reduced incidence of primary breast carcinoma. Cancer 103:1122–1128PubMedCrossRefGoogle Scholar
  87. 87.
    Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B (2006) Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 65(5):1536–1543PubMedCrossRefGoogle Scholar
  88. 88.
    Monnier Y, Farmer P, Bieler G, Imaizumi N, Sengstag T, Alghisi GC, Stehle JC, Ciarloni L, Andrejevic-Blant S et al (2008) CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Res 68(18):7323–7331PubMedCrossRefGoogle Scholar
  89. 89.
    Lark MW, Stroup GB, Dodds RA et al (2001) Antagonism of the osteoclast vitronectin receptor with an orally active non peptide inhibitor prevents cancellous bone loss in the ovariectomized rat. J Bone Miner Res 16:319–327PubMedCrossRefGoogle Scholar
  90. 90.
    Davis J, Warwick J, Totty N, Philp R, Helfich M, Horton M (1989) The osteoclast functional antigen, implicated in regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol 109:1817–1826CrossRefGoogle Scholar
  91. 91.
    Arap W, Pasqualin A, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380PubMedCrossRefGoogle Scholar
  92. 92.
    Raboisson P, Manthey CL, Chaikin M, Lattanze J, Crysler C, Leonard K, Pan W, Tomczuk BE, Marugan JJ (2006) Novel potent and selective alphavbeta3/alphavbeta5 integrin dual antagonists with reduced binding affinity for human serum albumin. Eur J Med Chem 41(7):847–861PubMedCrossRefGoogle Scholar
  93. 93.
    Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, King CP (1998) Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat Med 4(5):623–626PubMedCrossRefGoogle Scholar
  94. 94.
    Sivolapenko GB, Skarlos D, Pectasides D et al (1998) Imaging of metastatic melanoma utilising a technetium-99m labelled RGD-containing synthetic peptide. Eur J Nucl Med 25(10):1383–1389PubMedCrossRefGoogle Scholar
  95. 95.
    Haubner R, Wester HJ, Reuning U et al (1999) Radiolabeled αvβ3 integrin antagonists: a new class of tracer for tumor targeting. J Nucl Med 40(6):1061–1071PubMedGoogle Scholar
  96. 96.
    Dijkgraaf I, Kruijtzer JA, Frielink C, Soede AC, Hilbers HW, Oyen WJ, Corstens FH, Liskamp RM, Boerman OC (2006) Synthesis and biological evaluation of potent alphavbeta3-integrin receptor antagonists. Nucl Med Biol 33(8):953–961PubMedCrossRefGoogle Scholar
  97. 97.
    Chen X, Sievers E, Hou Y, Park R, Tohme M, Bart R, Bremner R, Bading JR, Conti PS (2005) Integrin αvβ3-targeted imaging of lung cancer. Neoplasia 7(3):271–279PubMedCrossRefGoogle Scholar
  98. 98.
    Silvestri E, Schiavo L, Lombardi A, Goglia F (2005) Thyroid hormones as molecular determinants of thermogenesis. Acta Physiol Scand 184:265–283PubMedCrossRefGoogle Scholar
  99. 99.
    Wrutniak-Cabello C, Casas F, Cabello G (2001) Thyroid hormone action in mitochondria. J Mol Endocrinol 26:67–77PubMedCrossRefGoogle Scholar
  100. 100.
    Huang CJ, Geller HM, Green WL, Craelius W (1999) Acute effects of thyroid hormone analogs on sodium currents in neonatal rat myocytes. J Mol Cell Cardiol 31:881–893PubMedCrossRefGoogle Scholar
  101. 101.
    Sakaguchi Y, Cui G, Sen L (1996) Acute effects of thyroid hormone on inward rectifier potassium channel currents in guinea pig ventricular myocytes. Endocrinology 137:4744–4751PubMedCrossRefGoogle Scholar
  102. 102.
    Incerpi S, Luly P, De Vito P, Farias RN (1999) Short-term effects of thyroid hormones on the Na/H antiport in L-6 myoblasts: high molecular specificity for 3,5,3′-triiodo-L-thyronine. Endocrinology 140:683–689PubMedCrossRefGoogle Scholar
  103. 103.
    Ashizawa K, Cheng S (1992) Regulation of thyroid hormone receptor-mediated transcription by a cytosol protein. Proc Natl Acad Sci USA 89:9277–9281PubMedCrossRefGoogle Scholar
  104. 104.
    Vie MP, Evrfard C, Osty J, Breton-Gilet A, Blanchet P, Pomerance M, Rouget P, Francon J, Blondeau JP (1997) Purification, molecular cloning, and functional expression of the human nicotinamide-adenine dinucleotide phosphate-regulated thyroid hormone-binding protein. Mol Endocrinol 11:1728–1736PubMedCrossRefGoogle Scholar
  105. 105.
    Bergh JJ, Lin H-Y, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ (2005) Integrin αvβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871PubMedCrossRefGoogle Scholar
  106. 106.
    Davis PJ, Davis FB, Cody V (2005) Membrane receptors mediating thyroid hormone action. Trends Endocrinol Metab 16:429–435PubMedCrossRefGoogle Scholar
  107. 107.
    Mousa SA, O’Connor L, Davis FB, Davis PJ (2006) Proangiogenesis action of the thyroid hormone analog 3,5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin-mediated. Endocrinology 147:1602–1607PubMedCrossRefGoogle Scholar
  108. 108.
    D’Arezzo S, Incerpi S, Davis FB, Acconia F, Marino M, Farias RN, Davis PJ (2004) Rapid nongenomic effects of 3,5,3′-triiodo-L-thyronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology 145:5694–5703PubMedCrossRefGoogle Scholar
  109. 109.
    Davis FB, Mousa SA, O’Connor L, Mohamed S, Lin H-Y, Cao HJ, Davis P (2004) Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ Res 94:1500–1506PubMedCrossRefGoogle Scholar
  110. 110.
    Mousa SA, O’Connor LJ, Bergh JJ, Davis FB, Scanlan TS, Davis PJ (2005) The proangiogenic action of thyroid hormone analogue GC-1 is initiated at an integrin. J Cardiovasc Pharmacol 46:356–360PubMedCrossRefGoogle Scholar
  111. 111.
    Tang H-Y, Lin H-Y, Zhang S, Davis FB, Davis PJ (2004) Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 145:3265–3272PubMedCrossRefGoogle Scholar
  112. 112.
    Davis FB, Tang H-Y, Shih A, Keating T, Lansing L, Hercbergs A, Fenstermaker RA, Mousa A, Mousa SA, Davis PJ, Lin H-Y (2006) Acting via a cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res 66(14):7270–7275PubMedCrossRefGoogle Scholar
  113. 113.
    Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY (2011) Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 51:99–115.PubMedCrossRefGoogle Scholar
  114. 114.
    Mousa SA, Bergh JJ, Dier E, Rebbaa A, O’Connor LJ, Yalcin M, Aljada A, Dyskin E, Davis FB, Lin HY, Davis PJ (2008) Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2):183–190PubMedCrossRefGoogle Scholar
  115. 115.
    Xiong J-P, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA (2001) Crystal structure of the extracellular segment of integrin αvβ3. Science 294:339–345PubMedCrossRefGoogle Scholar
  116. 116.
    Lin HY, Sun M, Tang HY, Lin C, Luidens MK, Mousa SA, Incerpi S, Drusano GL, Davis FB, Davis PJ (2009) L-Thyroxine vs. 3,5,3´-triiodo-L-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell Physiol 296(5):C980–C991.PubMedCrossRefGoogle Scholar
  117. 117.
    Tang HY, Lin HY, Zhang S, Davis FB, Davis PJ (2004) Thyroid hormone causes ­mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 145(7):3265–3272Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.The Pharmaceutical Research Institute at Albany College of Pharmacy and Health SciencesRensselaerUSA
  2. 2.Department of MedicineAlbany Medical CollegeAlbanyUSA

Personalised recommendations