Tetraiodothyroacetic Acid (Tetrac), Nanotetrac and Anti-angiogenesis

  • Paul J. Davis
  • Faith B. Davis
  • Mary K. Luidens
  • Hung-Yun Lin
  • Shaker A. Mousa


Tetraiodothyroacetic acid (tetrac) is a naturally occurring derivative of thyroid hormone, T4. In the absence or presence of L-T4 or L-T3, tetrac has been found to disrupt a number of functions or events that are important to cancer cells via the known thyroid hormone-tetrac receptor on the plasma membrane integrin αvβ3. These functions include regulation of cell division, local stimulation of angiogenesis, chemo-resistance and resistance to radiation. It is desirable to reformulate tetrac as a nanoparticle whose activity is exclusively at the cell surface integrin. Nanotetrac has been designed to limit tetrac to the extracellular space on the basis of the size of the nanoparticle and to provide optimized exposure of the biphenyl structure and acetic acid side chain of its inner ring to the receptor site on αvβ3. Tetrac and its novel nanoparticulate formulation have anti-angiogenesis activity that transcends the inhibition of thyroid hormone-binding at the integrin. Restriction of nanotetrac to the extracellular space has been verified, and nanotetrac has been shown to be up to 10-fold more potent than unmodified tetrac at its integrin target. Nanotetrac formulations have potential applications as inhibitors of tumor-related angiogenesis and of angiogenesis that is unrelated to malignancy, including clinically significant disorders ranging from skin diseases to vascular proliferation in the retina and neovascularization associated with inflammatory states.


Vascular Endothelial Growth Factor Thyroid Hormone Vascular Growth Factor Myeloid Cell Leukemia Sequence Nuclear Thyroid Hormone Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Moreno M, de Lange P, Lombardi A, Silvestri E, Lanni A, Goglia F (2008) Metabolic effects of thyroid hormone derivatives. Thyroid 18(2):239–253PubMedCrossRefGoogle Scholar
  2. 2.
    Burger AG, Engler D, Sakaloff C, Staeheli V (1979) The effects of tetraiodothyroacetic and triiodothyroacetic acids on thyroid function in euthyroid and hyperthyroid subjects. Acta Endocrinol (Copenhagen) 92(3):455–467Google Scholar
  3. 3.
    Davis PJ, Handwerger BS, Gregerman RI (1972) Thyroid hormone binding by human serum prealbumin (TBPA). Electrophoretic studies of triiodothyronine-TBPA interaction. J Clin Invest 51(3):515–521PubMedCrossRefGoogle Scholar
  4. 4.
    Davis FB, Cody V, Davis PJ, Borzynski LJ, Blas SD (1983) Stimulation by thyroid hormone analogues of red blood cell Ca2+-ATPase activity in vitro. Correlation between hormone structure and biologic activity in a human cell system. J Biol Chem 258(20):12373–12377PubMedGoogle Scholar
  5. 5.
    Davis PJ, Davis FB, Lawrence WD, Blas SD (1989) Thyroid hormone regulation of membrane Ca(2+)-ATPase activity. Endocr Res 15(4):651–682PubMedCrossRefGoogle Scholar
  6. 6.
    Warnick PR, Davis PJ, Davis FB, Cody V, Galindo J Jr, Blas SD (1993) Rabbit skeletal muscle sarcoplasmic reticulum Ca(2+)-ATPase activity: stimulation in vitro by thyroid hormone analogues and bipyridines. Biochim Biophys Acta 1153(2):184–190PubMedCrossRefGoogle Scholar
  7. 7.
    Nieman LK, Davis FB, Davis PJ, Cunningham EE, Gutman S, Blas SD, Schoenl M (1983) Effect of end-stage renal disease on responsiveness to calmodulin and thyroid hormone of calcium-ATPase in human red blood cells. Kidney Int Suppl 16:S167–S170PubMedGoogle Scholar
  8. 8.
    Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31(2):139–170PubMedCrossRefGoogle Scholar
  9. 9.
    Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ (2005) Integrin alphavbeta3 contains a cell surface receptor for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146(7):2864–2871PubMedCrossRefGoogle Scholar
  10. 10.
    Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY (2011) Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 51:99–115PubMedCrossRefGoogle Scholar
  11. 11.
    Lin HY, Cody V, Davis FB, Hercbergs AA, Luidens MK, Mousa SA, Davis PJ (2011) Identification and functions of the plasma membrane receptor for thyroid hormone analogues. Discov Med 11(59):337–347PubMedGoogle Scholar
  12. 12.
    Gaertner FC, Schwaiger M, Beer AJ (2010) Molecular imaging of αvβ3 expression in cancer patients. Q J Nucl Med Mol Imaging 54(3):309–326PubMedGoogle Scholar
  13. 13.
    Freindorf M, Furlani TR, Kong J, Cody V, Davis FB, Davis PJ (2012) Combined QM/MM study of thyroid and steroid hormone analogue interactions with αvβ3 integrin. J Biomed Biotechnol Article ID 959057, doi:10.1155/2012/959057Google Scholar
  14. 14.
    Davis PJ, Davis FB, Lin HY, Mousa SA, Zhou M, Luidens MK (2009) Translational implications of nongenomic actions of thyroid hormone initiated at its integrin receptor. Am J Physiol Endocrinol Metab 297(6):E1238–E1246PubMedCrossRefGoogle Scholar
  15. 15.
    Glinskii AB, Glinsky GV, Lin HY, Tang HY, Sun M, Davis FB, Luidens MK, Mousa SA, Hercbergs AH, Davis PJ (2009) Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac). Cell Cycle 8(21):3554–3562PubMedCrossRefGoogle Scholar
  16. 16.
    Somananth PR, Malinin NL, Byzova TV (2009) Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12(2):177–185CrossRefGoogle Scholar
  17. 17.
    Mousa SA, Bergh JJ, Dier E, Rebbaa A, O’Connor LJ, Yalcin M, Aljada A, Dyskin E, Davis FB, Lin HY, Davis PJ (2008) Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2):183–190PubMedCrossRefGoogle Scholar
  18. 18.
    Davis FB, Mousa SA, O’Connor L, Mohamed S, Lin HY, Cao HJ, Davis PJ (2004) Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ Res 94(11):1500–1506PubMedCrossRefGoogle Scholar
  19. 19.
    Rebbaa A, Chu P, Davis FB, Davis PJ, Mousa SA (2008) Novel function of the thyroid hormone analog tetraiodothyroacetic acid: a cancer chemosensitizing and anti-cancer agent. Angiogenesis 11(5):269–276PubMedCrossRefGoogle Scholar
  20. 20.
    Hercbergs A, Davis PJ, Davis FB, Ciesielski MJ, Leith JT (2009) Radiosensitization of GL261 glioma cells by tetraiodothyroacetic acid (tetrac). Cell Cycle 8(16):2586–2591PubMedCrossRefGoogle Scholar
  21. 21.
    Hercbergs AH, Lin HY, Davis FB, Davis PJ, Leith JT (2011) Radiosensitization and production of DNA double-strand breaks in U87MG brain tumor cells induced by tetraiodothyroacetic acid (tetrac). Cell Cycle 10(2):352–357PubMedCrossRefGoogle Scholar
  22. 22.
    Bridoux A, Cui H, Dyskin E, Schmitzer AR, Yalcin M, Mousa SA (2010) Semisynthesis and pharmacological activities of thyroxine analogs: development of new angiogenesis modulators. Bioorg Med Chem Lett 20(11):3394–3398PubMedCrossRefGoogle Scholar
  23. 23.
    Bharali DJ, Yalcin M, Davis PJ, Mousa SA (2012) Tetraiodothyroacetic acid (Tetrac) conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer. Nanomedicine (in press), 2013. doi:10.2217/nnm.12.200Google Scholar
  24. 24.
    Yalcin M, Dyskin E, Lansing L, Bharali DJ, Mousa SS, Bridoux A, Hercbergs AH, Lin HY, Davis FB, Glinsky GV, Glinskii AB, Ma J, Davis PJ, Mousa SA (2010) Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. J Clin Endocrinol Metab 95(4):1972–1980PubMedCrossRefGoogle Scholar
  25. 25.
    Zolotarjova NI, Hollis GF, Wynn R (2001) Unusually stable and long-lived ligand-induced conformations of integrins. J Biol Chem 276(20):17063–17068PubMedCrossRefGoogle Scholar
  26. 26.
    Medina-Gomez G, Calvo RM, Obregon MJ (2008) Thermogenic effect of triiodothyroacetic acid at low doses in rat adipose tissue without adverse effects in the thyroid axis. Am J Physiol Endocrinol Metab 294(4):E688–E697PubMedCrossRefGoogle Scholar
  27. 27.
    Sherman SI, Ringel MD, Smith MJ, Kopelen HA, Zoghbi WA, Ladenson PW (1997) Augmented hepatic and skeletal thyromimetic effects of tiratricol in comparison with levothyroxine. J Clin Endocrinol Metab 82(7):2153–2158PubMedCrossRefGoogle Scholar
  28. 28.
    Klootwijk W, Friesema EC, Visser TJ (2004) A nonselenoprotein from amphioxus deiodinates triac but not T3: is triac the primordial bioactive thyroid hormone? Endocrinology 152(8):3259–3267CrossRefGoogle Scholar
  29. 29.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31PubMedCrossRefGoogle Scholar
  30. 30.
    Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286PubMedCrossRefGoogle Scholar
  31. 31.
    Jensen RL (1998) Growth factor-mediated angiogenesis in malignant progression of glial tumors: a review. Surg Neurol 49(2):189–195PubMedCrossRefGoogle Scholar
  32. 32.
    Ribbati D (2010) Erythropoietin and tumor angiogenesis. Stem Cells Dev 19(1):1–4CrossRefGoogle Scholar
  33. 33.
    Mousa SA, Davis FB, Mohamed S, Davis PJ, Feng X (2006) Pro-angiogenesis action of thyroid hormone and analogs in a three-dimensional in vitro microvascular endothelial sprouting model. Int Angiol 25(4):407–413PubMedGoogle Scholar
  34. 34.
    Yoshida T, Gong J, Xu Z, Wei Y, Duh EJ (2012) Inhibition of pathological angiogenesis by the integrin αvβ3 antagonist tetraiodothyroacetic acid (tetrac). Exp Eye Res 94(1):41–48PubMedCrossRefGoogle Scholar
  35. 35.
    Yalcin M, Bharali DJ, Dyskin E, Dier E, Lansing L, Mousa SS, Davis FB, Davis PJ, Mousa SA (2010) Tetraiodothyroacetic acid and tetraiodothyroacetic acid nanoparticle effectively inhibit the growth of human follicular thyroid cell carcinoma. Thyroid 20(3):281–286PubMedCrossRefGoogle Scholar
  36. 36.
    Yalcin M, Bharali DJ, Lansing L, Dyskin E, Mousa SS, Hercbergs A, Davis FB, Davis PJ, Mousa SA (2009) Tetraiodothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res 29(10):3825–3831PubMedGoogle Scholar
  37. 37.
    Mousa SA, Yalcin M, Bharali DJ, Meng R, Tang HY, Lin HY, Davis FB, Davis PJ (2012) Tetraiodothyroacetic acid and its nanoformulation inhibit thyroid hormone stimulation of non-small cell lung cancer cells in vitro and its growth in xenografts. Lung Cancer 76(1):39–45PubMedCrossRefGoogle Scholar
  38. 38.
    Borges E, Jan Y, Ruoslahti E (2000) Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta3 integrin through its extracellular domain. J Biol Chem 275(51):39867–39873PubMedCrossRefGoogle Scholar
  39. 39.
    Stuttfeld E, Ballmer-Hofer K (2009) Critical review. Structure and function of VEGF receptors. Life 61(9):915–922PubMedGoogle Scholar
  40. 40.
    Thomas M, Augustin HG (2009) The role of the angiopoietins in vascular morphogenesis. Angiogenesis 12(2):125–137PubMedCrossRefGoogle Scholar
  41. 41.
    Nagy JA, Dvorak AM, Dvorak HF (2007) VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol 2:251–275PubMedCrossRefGoogle Scholar
  42. 42.
    Shojaei F (2012) Antiangiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett 320(2):130–137PubMedCrossRefGoogle Scholar
  43. 43.
    Ranpura V, Hapani S, Wu S (2011) Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 305(5):487–494PubMedCrossRefGoogle Scholar
  44. 44.
    Salam A, Mathew R, Sivaprasad S (2011) Treatment of proliferative diabetic retinopathy with anti-VEGF agents. Acta Ophthalmol 89(5):405–411PubMedCrossRefGoogle Scholar
  45. 45.
    The IVAN Study Investigators Writing Committee, Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ, Wordsworth S, Reeves BC (2012) Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN Randomized Trial. Ophthalmology 119:1399–1411PubMedCrossRefGoogle Scholar
  46. 46.
    Smith JR, Lanier VB, Braziel RM, Falkenhagen KM, White C, Rosenbaum JT (2007) Expression of vascular endothelial growth factor and its receptors in rosacea. Br J Ophthalmol 91(2):226–229PubMedCrossRefGoogle Scholar
  47. 47.
    Canavese M, Altruda F, Ruzicka T, Schauber J (2010) Vascular endothelial growth factor (VEGF) in the pathogenesis of psoriasis—a possible target for novel therapies. J Dermatol Sci 58(3):171–176PubMedCrossRefGoogle Scholar
  48. 48.
    Arevalo JF, Sanchez JG, Lasave AF, Wu L, Maia M, Bonafonte S, Brito M, Alezzandrini AA, Restrepo N, Berrocal MH, Saravia M, Farah ME, Fromow-Guerra J, Morales-Canton V (2010) Intravitreal bevacizumab (Avastin®) for diabetic retinopathy at 24-months: The 2008 Juan Verdaguer-Planas Lecture. Curr Diabetes Rev 6(5):313–322PubMedCrossRefGoogle Scholar
  49. 49.
    Ma Y, Zhang Y, Zhao T, Jiang YR (2012) Vascular endothelial growth factor in plasma and vitreous fluid of patients with proliferative diabetic retinopathy patients after intravitreal injection of bevacizumab. Am J Ophthalmol 153(2):307–313PubMedCrossRefGoogle Scholar
  50. 50.
    Van Geest RJ, Lesnik-Oberstein SY, Tan HS, Mura M, Goldschmeding R, Van Noorden CJ, Klaassen I, Schlingermann RO (2012) A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy. Br J Ophthalmol 96(4):587–590PubMedCrossRefGoogle Scholar
  51. 51.
    Lin HY, Glinsky GV, Glinskii AB, Davis FB, Mousa SA, Luidens MK, Hercbergs A, Davis PJ (2012) Tetraiodothyroacetic acid (tetrac) acts at a plasma membrane receptor to modulate expression of inflammation-related genes in tumor cells.In: 94th Annual meeting of The Endocrine Society, Houston, TX, 23–26 June, abstract 852243Google Scholar
  52. 52.
    D’Arezzo S, Incerpi S, Davis FB, Acconcia F, Marino M, Farias RN, Davis PJ (2004) Rapid nongenomic effects of 3, 5, 3′-triiodo-L-thyronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology 145(12):5694–5703PubMedCrossRefGoogle Scholar
  53. 53.
    Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ (2011) Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm 8(6):2032–2038PubMedCrossRefGoogle Scholar
  54. 54.
    Hait WN, Aftab DT (1992) Rational design and pre-clinical pharmacology of drugs for reversing multidrug resistance. Biochem Pharmacol 43(1):103–107PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Paul J. Davis
    • 1
    • 2
  • Faith B. Davis
    • 1
  • Mary K. Luidens
    • 3
  • Hung-Yun Lin
    • 4
  • Shaker A. Mousa
    • 1
  1. 1.The Pharmaceutical Research Institute at Albany College of Pharmacy and Health SciencesRensselaerUSA
  2. 2.Department of MedicineAlbany Medical CenterAlbanyUSA
  3. 3.Department of MedicineAlbany Medical CollegeAlbanyUSA
  4. 4.Institute of Cancer Biology and Drug DiscoveryTaipei Medical UniversityTaipeiTaiwan

Personalised recommendations