Degradation of Pesticides by TiO2 Photocatalysis

  • Alina DârjanEmail author
  • Camelia Drăghici
  • Dana Perniu
  • Anca Duţă
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


Extensive research has been conducted on the removal of organic pollutants in water using heterogeneous photocatalysis. This study reviews some of the recent reports on TiO2 photocatalysis applied for degradation of pesticides. The role of the operating parameters in the optimization of the process, the strategies used to develop visible active titania based photocatalysts and various ways to increase the cost-effectiveness of the photocatalytic processes are discussed. From the papers reviewed it can be concluded that under optimal conditions high efficiency in the photodegradation of pesticides can be reached.


Photocatalysis Titanium dioxide Pesticide 


  1. 1.
    Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage 92:311–330CrossRefGoogle Scholar
  2. 2.
    Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529CrossRefGoogle Scholar
  3. 3.
    Araña J, Garriga i Cabo C, Fernández Rodríguez C, Herrera Melián JA, Ortega Méndez JA, Doña Rodríguez JM, Pérez Peña J (2008) Combining TiO2-photocatalysis and wetland reactors for the efficient treatment of pesticides. Chemosphere 71:788–794CrossRefGoogle Scholar
  4. 4.
    Arias-Estévez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Mejuto J-C, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Ecosyst Environ 123:247–260CrossRefGoogle Scholar
  5. 5.
    Barka N, Assabbane A, Nounahb A, Aît Ichou Y (2008) Photocatalytic degradation of indigo carmine in aqueous solution by TiO2-coated non-woven fibres. J Hazard Mater 152:1054–1059CrossRefGoogle Scholar
  6. 6.
    Barka N, Qourzal S, Assabbane A, Nounahb A, Aît-Ichou Y (2008) Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper. J Photochem Photobiol A Chem 195:346–351CrossRefGoogle Scholar
  7. 7.
    Chowdhury P, Moreira J, Gomaa H, Ray AK (2012) Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and kinetic study. Ind Eng Chem Res 51:4523–4532CrossRefGoogle Scholar
  8. 8.
    Damardji B, Khalaf H, Duclaux L, David B (2009) Preparation of TiO2-pillared montmorillonite as photocatalyst Part II. Photocatalytic degradation of a textile azo dye. Appl Clay Sci 45:98–104CrossRefGoogle Scholar
  9. 9.
    Devi LG, Murthy BN, Kumar SG (2009) Photocatalytic activity of V5+, Mo6+ and Th4+ doped polycrystalline TiO2 for the degradation of chlorpyrifos under UV/solar light. J Mol Catal A Chem 308:174–181CrossRefGoogle Scholar
  10. 10.
    Devipriya S, Yesodharan S (2005) Photocatalytic degradation of pesticide contaminants in water. Sol Energy Mater Sol Cells 86:309–348CrossRefGoogle Scholar
  11. 11.
    Fenoll J, Ruiz E, Hellín P, Flores P, Navarro S (2011) Heterogeneous photocatalytic oxidation of cyprodinil and fludioxonil in leaching water under solar irradiation. Chemosphere 85:1262–1268CrossRefGoogle Scholar
  12. 12.
    Furukawa S, Shishido T, Teramura K, Tanaka T (2012) Photocatalytic oxidation of alcohols over TiO2 covered with Nb2O5. ACS Catal 2:175–179CrossRefGoogle Scholar
  13. 13.
    Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9:1–12CrossRefGoogle Scholar
  14. 14.
    Hoffmann MR, Martin ST, Choi W, Bahnemannt DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  15. 15.
    Kaneco S, Li N, Itoh K, Katsumata H, Suzuki T, Ohta K (2009) Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution: kinetics and mineralization. Chem Eng J 148:50–56CrossRefGoogle Scholar
  16. 16.
    Kashif N, Ouyang F (2009) Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. J Environ Sci 21:527–533CrossRefGoogle Scholar
  17. 17.
    Kuo WS, Chiang YH, Lai LS (2008) Solar photocatalysis of carbaryl rinsate promoted by dye photosensitization. Dye Pigment 76:82–87CrossRefGoogle Scholar
  18. 18.
    Lhomme L, Brosillon S, Wolbert D (2008) Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media. Chemosphere 70:381–386CrossRefGoogle Scholar
  19. 19.
    Liu W, Chen S, Zhao W, Zhang S (2009) Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. J Hazard Mater 164:154–160CrossRefGoogle Scholar
  20. 20.
    Liu W, Chen S, Zhao W, Zhang S (2009) Study on the photocatalytic degradation of trichlorfon in suspension of titanium dioxide. Desalination 249:1288–1293CrossRefGoogle Scholar
  21. 21.
    Mahalakshmi M, Priya SV, Arabindoo B, Palanichamy M, Murugesan V (2009) Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2. J Hazard Mater 161:336–343CrossRefGoogle Scholar
  22. 22.
    Mahmoodi NM, Arami M, Gharanjiga K, Nourmohammadiana F, Bidokhti AY (2008) Purification of water containing agricultural organophosphorus pollutant using titania nanophotocatalysis: laboratory studies and numerical modeling. Desalination 230:183–192CrossRefGoogle Scholar
  23. 23.
    Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59CrossRefGoogle Scholar
  24. 24.
    Oppenlander T (2003) Photochemical purification of water and air. WILEY-VCH Verlag, WeinheimGoogle Scholar
  25. 25.
    Park J-H (2009) Photochemical degradation and toxicity reduction of methyl 1-[(butylamino)carbonyl]-1H-benzimidazol-2-ylcarbamate in agricultural wastewater: comparative study of photocatalysis and sonophotocatalysis. Desalination 249:480–485CrossRefGoogle Scholar
  26. 26.
    Pourata R, Khataee AR, Aber S, Daneshvar N (2009) Removal of the herbicide Bentazon from contaminated water in the presence of synthesized nanocrystalline TiO2 powders under irradiation of UV-C light. Desalination 249:301–307CrossRefGoogle Scholar
  27. 27.
    Robert D, Malato S (2002) Solar photocatalysis: a clean process for water detoxification. Sci Total Environ 291:85–97CrossRefGoogle Scholar
  28. 28.
    Robertson PKJ (1996) Semiconductor photocatalysis: an environmentally acceptable alternative production technique and effluent treatment process. J Clean Prod 4:203–212CrossRefGoogle Scholar
  29. 29.
    Robertson PKJ, Robertson JMC, Bahnemann DW (2012) Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. J Hazard Mater 211–212:161–171CrossRefGoogle Scholar
  30. 30.
    Saien J, Khezrianjoo S (2008) Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: optimization, kinetics and toxicity studies. J Hazard Mater 157:269–276CrossRefGoogle Scholar
  31. 31.
    Senthilnathan J, Philip L (2010) Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem Eng J 161:83–92CrossRefGoogle Scholar
  32. 32.
    Sharma MVP, Durgakumari V, Subrahmanyam M (2008) TiO2 supported over SBA-15: an efficient photocatalyst for the pesticide degradation using solar light. Chemosphere 73:1562–1569CrossRefGoogle Scholar
  33. 33.
    Sharma MVP, Durgakumari V, Subrahmanyam M (2008) Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems. J Hazard Mater 160:568–575CrossRefGoogle Scholar
  34. 34.
    Sharma MVP, Durgakumari V, Subrahmanyam M (2008) Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light. Chemosphere 72:644–651CrossRefGoogle Scholar
  35. 35.
    Sharma MVP, Lalitha K, Durgakumari V, Subrahmanyam M (2008) Solar photocatalytic mineralization of isoproturon over TiO2/HY composite systems. Sol Energy Mater Sol Cell 92:332–342CrossRefGoogle Scholar
  36. 36.
    Sharma MVP, Sadanandam G, Ratnamala A, Durgakumari V, Subrahmanyam M (2009) An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. J Hazard Mater 171:626–633CrossRefGoogle Scholar
  37. 37.
    Vilar VJP, Moreira FC, Ferreira ACC, Sousa MA, Gonçalves C, Alpendurada MF, Boaventura RAR (2012) Biodegradability enhancement of a pesticide-containing bio-treated wastewater using solar photo-Fenton treatment step followed by a biological oxidation process. Water Res 46:4599–4613CrossRefGoogle Scholar
  38. 38.
    Wang H, Wang H-L, Jiang W-F, Li Z-Q (2009) Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res 43:204–210CrossRefGoogle Scholar
  39. 39.
    Wu R-J, Chen C-C, Chen M-H, Lu C-S (2009) Titanium dioxide-mediated heterogeneous photocatalytic degradation of terbufos: parameter study and reaction pathways. J Hazard Mater 162:945–953CrossRefGoogle Scholar
  40. 40.
    Yahiat S, Fourcade F, Brosillon S, Amrane A (2011) Photocatalysis as a pre-treatment prior to a biological degradation of cyproconazole. Desalination 281:61–67CrossRefGoogle Scholar
  41. 41.
    Zhang M, Shao C, Guo Z, Zhang Z, Mu J, Zhang P, Cao T, Liu Y (2011) Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres. ACS Appl Mater Interfaces 3:2573–2578CrossRefGoogle Scholar
  42. 42.
    Zhiyong Y, Keppner H, Laub D, Mielczarski E, Mielczarski J, Kiwi-Minsker L, Renken L, Kiwi J (2008) Photocatalytic discoloration of Methyl Orange on innovative parylene–TiO2 flexible thin films under simulated sunlight. Appl Catal Environ 79:63–71CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alina Dârjan
    • 1
    Email author
  • Camelia Drăghici
    • 1
  • Dana Perniu
    • 1
  • Anca Duţă
    • 1
  1. 1.Department of Product Design, Mechatronics and EnvironmentTransilvania University of BrasovBrasovRomania

Personalised recommendations