Advertisement

Random Noble Means Substitutions

  • Michael BaakeEmail author
  • Markus Moll

Abstract

The random local mixture of a family of primitive substitution rules with noble mean inflation multiplier is investigated. This extends the random Fibonacci example that was introduced by Godrèche and Luck in (J. Stat. Phys. 55:1–28, 1989). We discuss the structure of the corresponding dynamical systems, and determine the entropy, an ergodic invariant measure and diffraction spectra.

Keywords

Topological Entropy Substitution Matrix Pure Point Random Dynamical System Substitution Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Uwe Grimm and Johan Nilsson for discussions. This work was supported by the German Research Council (DFG), within the CRC 701.

References

  1. 1.
    Baake M, Birkner M, Moody RV (2010) Diffraction of stochastic point sets: explicitly computable examples. Commun Math Phys 293:611–660. arXiv:0803.1266 CrossRefGoogle Scholar
  2. 2.
    Baake M, Gähler F, Grimm U (2012) Spectral and topological properties of a family of generalised Thue–Morse sequences. J Math Phys 53:032701. arXiv:1201.1423 CrossRefGoogle Scholar
  3. 3.
    Baake M, Lenz D (2004) Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra. Ergod Theory Dyn Syst 24:1867–1893. arXiv:math.DS/0302231 CrossRefGoogle Scholar
  4. 4.
    Baake M, Lenz D, Richard C (2007) Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies. Lett Math Phys 82:61–77. arXiv:0706.1677 CrossRefGoogle Scholar
  5. 5.
    Baake M, Moody RV (2004) Weighted Dirac combs with pure point diffraction. J Reine Angew Math 573:61–94. arXiv:math.MG/0203030 Google Scholar
  6. 6.
    Cornfeld IP, Fomin SV, Sinai YG (1982) Ergodic theory. Springer, New York CrossRefGoogle Scholar
  7. 7.
    Etemadi N (1981) An elementary proof of the strong law of large numbers. Z Wahrscheinlichkeitstheor Verw Geb 55:119–122 CrossRefGoogle Scholar
  8. 8.
    Godrèche C, Luck JM (1989) Quasiperiodicity and randomness in tilings of the plane. J Stat Phys 55:1–28 CrossRefGoogle Scholar
  9. 9.
    Lütkehölter C (2010) Diffraktion stochastischer Fibonacci-Mengen. Diplomarbeit, Univ Bielefeld Google Scholar
  10. 10.
    Moll M (2013) Random Noble means substitutions. PhD thesis, Univ Bielefeld, in preparation Google Scholar
  11. 11.
    Moody RV (1997) Meyer sets and their duals. In: The mathematics of long-range aperiodic order. NATO ASI series C, vol 489. Kluwer, Dordrecht, pp 403–441 CrossRefGoogle Scholar
  12. 12.
    Nilsson J (2012) On the entropy of a family of random substitution systems. Monatshefte Math 166:1–15. arXiv:1103.4777 CrossRefGoogle Scholar
  13. 13.
    Queffélec M (2010) Substitution dynamical systems—spectral analysis, 2nd edn. Springer, Berlin CrossRefGoogle Scholar
  14. 14.
    Seneta E (2006) Non-negative matrices and Markov chains, 2nd revised edn. Springer, New York Google Scholar
  15. 15.
    Strungaru N (2005) Almost periodic measures and long-range order in Meyer sets. Discrete Comput Geom 33:483–505 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations