Pseudo-Symmetry in Tungsten Bronze Type Sr3TiNb4O15

  • Thomas A. Whittle
  • William R. Brant
  • Siegbert Schmid
Conference paper

Abstract

The structure of Sr3TiNb4O15 has been re-investigated using synchrotron X-ray powder diffraction data. Rietveld refinements of a structural model against these data were performed and confirmed a new unit cell and space group symmetry. Sr3TiNb4O15 was found to possess Pna21 symmetry with a unit cell a=12.36081(2) Å, b=12.40288(2) Å, c=7.751270(10) Å.

Keywords

Superstructure Reflection Orthorhombic Crystal System Room Temperature Structure Conventional Solid State Synthesis Doubled Unit Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

A part of this work was carried out on the powder diffraction beamline at the Australian Synchrotron, Victoria, Australia, and the authors would like to thank Dr. Qinfen Gu for his assistance. The authors would also like to thank AINSE Ltd for providing financial assistance through the postgraduate award scheme.

References

  1. 1.
    Stephenson N (1965) Acta Crystallogr 18:496 CrossRefGoogle Scholar
  2. 2.
    Dickens PG, Whittingham MS (1968) Q Rev, Chem Soc 22:30 CrossRefGoogle Scholar
  3. 3.
    Jamieson PB, Abrahams SC, Bernstein JL (1968) J Chem Phys 48:5048 CrossRefGoogle Scholar
  4. 4.
    Oliver JR, Neurgaonkar RR, Cross LE (1989) J Am Ceram Soc 72:202 CrossRefGoogle Scholar
  5. 5.
    Neurgaonkar RR, Cory WK, Oliver JR, Sharp EJ, Wood GL, Salamo GJ (1993) Ferroelectrics 142:167 CrossRefGoogle Scholar
  6. 6.
    Neurgaonkar RR, Oliver JR, Cory WK, Cross LE, Viehland D (1994) Ferroelectrics 160:265 CrossRefGoogle Scholar
  7. 7.
    Fang L, Zhang H, Yang JF, Hong XK, Meng FC (2004) J Mater Sci, Mater Electron 15:355 CrossRefGoogle Scholar
  8. 8.
    Massarotti V, Capsoni D, Bini M, Azzoni CB, Mozzati MC, Galinetto P, Chiodelli G (2006) J Phys Chem B 110:17798 CrossRefGoogle Scholar
  9. 9.
    Halasyamani PS, Poeppelmeier KR (1998) Chem Mater 10:2753 CrossRefGoogle Scholar
  10. 10.
    Halasyamani PS (2004) Chem Mater 16:3586 CrossRefGoogle Scholar
  11. 11.
    Rao KS, Subrahmanyam ASV, Rao SMM (1997) Ferroelectrics 196:109 CrossRefGoogle Scholar
  12. 12.
    Ainger FW, Brickley WP, Smith GV (1970) Proc Br Ceram Soc 18:221 Google Scholar
  13. 13.
    Ikeda T, Haraguchi T (1970) Jpn J Appl Phys 9:2 Google Scholar
  14. 14.
    Neurgaonkar RR, Nelson JG, Oliver JR (1992) Mater Res Bull 27:677 CrossRefGoogle Scholar
  15. 15.
    Chi EO, Gandini A, Ok KM, Zhang L, Halasyamani PS (2004) Chem Mater 16:3616 CrossRefGoogle Scholar
  16. 16.
    Yuan Y, Chen XM, Wu YJ (2005) J Appl Phys 98:084110 CrossRefGoogle Scholar
  17. 17.
    Nair VG, Subramanian V, Santhosh PN (2011) AIP Conf Proc 1349:133 CrossRefGoogle Scholar
  18. 18.
    Petřiček V, Dušek M, Palatinus L (2006) Jana2006. The crystallographic computing system. Institute of Physics, Praha Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thomas A. Whittle
    • 1
  • William R. Brant
    • 1
  • Siegbert Schmid
    • 1
  1. 1.School of ChemistryThe University of SydneySydneyAustralia

Personalised recommendations