Pseudo-Commensurate GdBaCo2O5+δ and Its Phase Transition at Elevated Temperatures

  • N. IshizawaEmail author
  • T. Asaka
  • T. Kudo
  • K. Fukuda
  • N. Abe
  • T. Arima
Conference paper


An in-situ single-crystal X-ray diffraction study on tetragonal GdBaCo2O5+δ with δ∼0.38 revealed that the crystal is pseudo-commensurate at room temperature with the magnitudes of the modulation vectors q 1 and q 2 parallel to the basal axes increasing gradually from the nearly commensurate value close to 1/3 upon heating. The basic structure of the compound is a double-layered perovskite type, having an alternating layer sequence [GdO δ ]–[CoO2]–[BaO]–[CoO2] along the c axis. The oxygen deficiency of the crystal occurs only in the [GdO δ ] layer, though it causes many positional modulations of constituent atoms in association with the valence fluctuation of Co cations between +2 and +3. Because of its pseudo-commensurate nature, the room temperature structure was also investigated by the commensurately-modulated approach as well as the conventional three-dimensional ones assuming a 3×3×2 supercell of the P4/mmm symmetry. These approaches successfully reproduced a prime structure of the compound, consisting of intersecting CoO5 pyramidal arrays parallel to a and b axes. The incommensurate approach, on the other hand, also suggested a presence of a local disorder having a structural similarity with the high-temperature modification.


Gadolinium barium cobaltate GdBaCo2O5+δ Single-crystal X-ray diffraction Modulated structure 



The authors are grateful to Dr Vaclav Petricek, Institute of Physics, Academy of Science, Czech Republic, for his valuable comments and calculations, and Dr. Terutoshi Sakakura, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan, for supplying us a Python script for data conversion. This work was supported by the Grant-in-Aids for Scientific Research No. 22360272 from the Japan Society for the Promotion of Science.


  1. 1.
    Moritomo Y, Takeo M, Liu XJ, Akimoto T, Nakamura A (1998) Metal–insulator transition due to charge ordering in R1/2Ba1/2CoO3. Phys Rev B, Condens Matter Mater Phys 58(20):R13334–R13337 CrossRefGoogle Scholar
  2. 2.
    Maignan A, Martin C, Pelloquin D, Nguyen N, Raveau B (1999) Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5+d, closely related to the “112” structure. J Solid State Chem 142(2):247–260 CrossRefGoogle Scholar
  3. 3.
    Taskin AA, Lavrov AN, Ando Y (2005) Achieving fast oxygen diffusion in perovskites by cation ordering. Appl Phys Lett 86(9):091910 CrossRefGoogle Scholar
  4. 4.
    Tarancón A, Morata A, Dezanneau G, Skinner SJ, Kilner JA, Estradé S, Hernández-Ramírez F, Peiró F, Morante JR (2007) GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode. J Power Sources 174(1):255–263. doi: 10.1016/j.jpowsour.2007.08.077 CrossRefGoogle Scholar
  5. 5.
    Peña-Martínez J, Tarancón A, Marrero-López D, Ruiz-Morales JC, Núñez P (2008) Evaluation of GdBaCo2O5+δ as cathode material for doped lanthanum gallate electrolyte IT-SOFCs. Fuel Cells 8(5):351–359. doi: 10.1002/fuce.200800026 CrossRefGoogle Scholar
  6. 6.
    Er-Rakho L, Michel C, Lacorre P, Raveau B (1988) YBaCuFeO5+δ: a novel oxygen-deficient perovskite with a layer structure. J Solid State Chem 73(2):531–535. doi: 10.1016/0022-4596(88)90141-7 CrossRefGoogle Scholar
  7. 7.
    Zhou W, Lin CT, Liang WY (1993) Synthesis and structural studies of the perovskite-related compound YBaCo2O5+x. Adv Mater 5(10):735–738. doi: 10.1002/adma.19930051010 CrossRefGoogle Scholar
  8. 8.
    Akahoshi D, Ueda Y (2001) Oxygen nonstoichiometry, structures, and physical properties of YBaCo2O5+x (0.00≤x≤0.52). J Solid State Chem 156(2):355–363. doi: 10.1006/jssc.2000.9006 CrossRefGoogle Scholar
  9. 9.
    Frontera C, García-Muñoz JL, Llobet A, Aranda MAG (2002) Selective spin-state switch and metal–insulator transition in GdBaCo2O5.5. Phys Rev B, Condens Matter Mater Phys 65(18):180405 CrossRefGoogle Scholar
  10. 10.
    Asaka T, Abe N, Kudo T, Fukuda K, Kimoto K, Matsui Y, Ishizawa N, Arima T (2013) Structural phase transition and magnetic-field effect on the modulated structure in GdBaCo2O5+δ (δ<0.5). Phys Rev Lett, in press Google Scholar
  11. 11.
    Ishizawa N, Asaka T, Kudo T, Fukuda K, Abe N, Arima T (2013) Pseudo-commensurate GdBaCo2O5+δ. J Solid State Chem 198:532–541. doi: 10.1016/j.jssc.2012.11.004 CrossRefGoogle Scholar
  12. 12.
    Stokes HT, Campbell BJ, van Smaalen S (2011) Generation of (3+d)-dimensional superspace groups for describing the symmetry of modulated crystalline structures. Acta Crystallogr, Sect A, Found Crystallogr 67(1):45–55. doi: 10.1107/S0108767310042297 CrossRefGoogle Scholar
  13. 13.
    Petricek V, Dusek M, Palatinus L (2006) Jana2006, structure determination software programs. Institute of Physics, Praha Google Scholar
  14. 14.
    Smaalen Sv (2007) Incommensurate crystallography. Oxford University, Oxford CrossRefGoogle Scholar
  15. 15.
    Brown ID (2002) The chemical bond in inorganic chemistry: the bond valence model. Oxford University Press, Oxford Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • N. Ishizawa
    • 1
    Email author
  • T. Asaka
    • 1
  • T. Kudo
    • 1
  • K. Fukuda
    • 1
  • N. Abe
    • 2
  • T. Arima
    • 2
  1. 1.Nagoya Institute of TechnologyNagoyaJapan
  2. 2.Department of Advanced Materials ScienceThe University of TokyoTokyoJapan

Personalised recommendations