Analysis of Dislocations in Quasicrystals Composed of Self-assembled Nanoparticles

  • Liron Korkidi
  • Kobi Barkan
  • Ron LifshitzEmail author


We analyze transmission electron microscopy (TEM) images of self-assembled quasicrystals composed of binary systems of nanoparticles. We use an automated procedure that identifies the positions of dislocations and determines their topological character. To achieve this, we decompose the quasicrystal into its individual density modes, or Fourier components, and identify their topological winding numbers for every dislocation. This procedure associates a Burgers function with each dislocation, from which we extract the components of the Burgers vector after choosing a basis. The Burgers vectors that we see in the experimental images are all of lowest order, containing only 0s and 1s as their components. We argue that the density of the different types of Burgers vectors depends on their energetic cost.


Burger Vector Bragg Peak Density Mode Bright Ring Topological Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are very grateful to Dmitri Talapin for providing the TEM images. This research is supported by the Israel Science Foundation through grant No. 556/10.


  1. 1.
    Barak, G, Lifshitz, R (2006) Dislocation dynamics in a dodecagonal quasiperiodic structure. Philos Mag 86:1059. doi: 10.1080/14786430500256383 CrossRefGoogle Scholar
  2. 2.
    Barkan, K, Diamant, H, Lifshitz, R (2011) Stability of quasicrystals composed of soft isotropic particles. Phys Rev B 83:172201. doi: 10.1103/PhysRevB.83.172201 CrossRefGoogle Scholar
  3. 3.
    Bodnarchuk, MI, Shevchenko, EV, Talapin, DV (2011) Structural defects in periodic and quasicrystalline binary nanocrystal superlattices. J Am Chem Soc 133:20837. doi: 10.1021/ja207154v CrossRefGoogle Scholar
  4. 4.
    Dotera, T (2011) Quasicrystals in soft matter. Isr J Chem 51:1197–1205. doi: 10.1002/ijch.201100146 CrossRefGoogle Scholar
  5. 5.
    Dotera, T (2012) Toward the discovery of new soft quasicrystals: from a numerical study viewpoint. J Polym Sci, Polym Phys Ed 50:155–167. doi: 10.1002/polb.22395 CrossRefGoogle Scholar
  6. 6.
    Fischer, S, Exner, A, Zielske, K, Perlich, J, Deloudi, S, Steurer, W, Lindner, P, Förster, S (2011) Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. Proc Natl Acad Sci USA 108:1810–1814. doi: 10.1073/pnas.1008695108 CrossRefGoogle Scholar
  7. 7.
    Freedman, B, Bartal, G, Segev, M, Lifshitz, R, Christodoulides, DN, Fleischer, JW (2006) Wave and defect dynamics in nonlinear photonic quasicrystals. Nature 440:1166–1169. doi: 10.1038/nature04722 CrossRefGoogle Scholar
  8. 8.
    Freedman, B, Lifshitz, R, Fleischer, JW, Segev, M (2007) Phason dynamics in nonlinear photonic quasicrystals. Nat Mater 6:776–781. doi: 10.1038/nmat1981 CrossRefGoogle Scholar
  9. 9.
    Hayashida, K, Dotera, T, Takano, A, Matsushita, Y (2007) Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys Rev Lett 98:195502. doi: 10.1103/PhysRevLett.98.195502 CrossRefGoogle Scholar
  10. 10.
    Leung PW, Henley CL, Chester GV (1989) Dodecagonal order in a two-dimensional Lennard–Jones system. Phys Rev B 39:446–458. doi: 10.1103/PhysRevB.39.446 CrossRefGoogle Scholar
  11. 11.
    Lifshitz, R (2003) Quasicrystals: a matter of definition. Found Phys 33:1703–1711 CrossRefGoogle Scholar
  12. 12.
    Lifshitz, R (2007) What is a crystal? Z Kristallogr 222:313–317. doi: 10.1524/zkri.2007.222.6.313 CrossRefGoogle Scholar
  13. 13.
    Lifshitz, R (2011) Symmetry breaking and order in the age of quasicrystals. Isr J Chem 51:1156. doi: 10.1002/ijch.201100156 CrossRefGoogle Scholar
  14. 14.
    Lifshitz, R, Diamant, H (2007) Soft quasicrystals—why are they stable? Philos Mag 87:3021. doi: 10.1080/14786430701358673 CrossRefGoogle Scholar
  15. 15.
    Talapin, DV (2012) Private communication Google Scholar
  16. 16.
    Talapin, DV, Shevchenko, EV, Bodnarchuk, MI, Ye, X, Chen, J, Murray, CB (2009) Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461:964. doi: 10.1038/nature08439 CrossRefGoogle Scholar
  17. 17.
    Ungar, G, Zeng, X (2005) Frank–Kasper, quasicrystalline and related phases in liquid crystals. Soft Matter 1:95–106. doi: 10.1039/B502443A CrossRefGoogle Scholar
  18. 18.
    Ungar, G, Percec, V, Zeng, X, Leowanawat, P (2011) Liquid quasicrystals. Isr J Chem 51: 1206–1215. doi: 10.1002/ijch.201100151 CrossRefGoogle Scholar
  19. 19.
    Wollgarten M, Franz V, Feuerbacher M, Urban K (2002) In: Suck J-B, Schreiber M, Hussler P (eds) Quasicrystals: an introduction to structure, physical properties, and applications. Springer, Berlin, Chap. 13 Google Scholar
  20. 20.
    Xiao, C, Fujita, N, Miyasaka, K, Sakamoto, Y, Terasaki, O (2012) Dodecagonal tiling in mesoporous silica. Nature 487:349. doi: 10.1038/nature11230 CrossRefGoogle Scholar
  21. 21.
    Zeng, X, Ungar, G, Liu, Y, Percec, V, Dulcey, AE, Hobbs, JK (2004) Supramolecular dendritic liquid quasicrystals. Nature 428:157–160. doi: 10.1038/nature02368 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Raymond and Beverly Sackler School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations