Advertisement

Hume–Rothery Stabilization Mechanism in Low-Temperature Phase Zn6Sc Approximant and e/a Determination of Sc and Y in M–Sc and M–Y (M=Zn, Cd and Al) Alloy Systems

  • U. MizutaniEmail author
  • M. Inukai
  • H. Sato
  • E. S. Zijlstra
Conference paper

Abstract

We have performed FLAPW electronic structure calculations with subsequent FLAPW-Fourier analysis for the low temperature phase Zn6Sc containing 336 atoms per unit cell with space group B2/b. The square of the Fermi diameter (2k F )2, electrons per atom ratio e/a and critical reciprocal lattice vector |G|2s were determined. The origin of its pseudogap at the Fermi level was interpreted as arising from interference of electrons with (2k F )2=79.0±0.2 with sets of lattice planes with |G|2 ranging over 72 to 96. The work was extended to intermetallic compounds existing in M–Sc and M–Y (M=Zn, Cd and Al) binary alloy systems. The effective e/a values for Sc and Y were deduced to be 3.0 and 3.1, respectively.

Keywords

Hume–Rothery stabilization mechanism FLAPW-Fourier analysis Fs–Bz interactions Tsai-type approximant Valence of Sc and Y 

Notes

Acknowledgements

One of the authors (UM) is grateful for the financial support of the Grant-in-Aid for Scientific Research (Contract No. 23560793) from the Japan Society for the Promotion of Science.

References

  1. 1.
    Tsai AP, Inoue A, Yokoyama Y, Masumoto T (1990) Mater Trans Jpn Inst Met 31:98 Google Scholar
  2. 2.
    Yokoyama Y, Tsai AP, Inoue A, Masumoto T, Chen HS (1991) Mater Trans Jpn Inst Met 32:421 Google Scholar
  3. 3.
    Raynor GV (1949) Prog Met Phys 1:1 CrossRefGoogle Scholar
  4. 4.
    Tsai AP, Guo JQ, Abe E, Takakura H, Sato TJ (2000) Nature 408:538 CrossRefGoogle Scholar
  5. 5.
    Kaneko Y, Arichika M, Ishimasa T (2001) Philos Mag Lett 81:777 CrossRefGoogle Scholar
  6. 6.
    Andrusyak RI, Kotur BYa, Zavodnik VE (1989) Kristallografiâ 34:996 Google Scholar
  7. 7.
    Ishimasa T, Kaneko Y, Kaneko H (2004) J Non-Cryst Solids 334– 335:1 CrossRefGoogle Scholar
  8. 8.
    Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca Google Scholar
  9. 9.
    Mizutani U (2010) Hume–Rothery rules for structurally complex alloy phases. CRC Press/Taylor & Francis Group, Boca Raton CrossRefGoogle Scholar
  10. 10.
    Inukai M, Zijlstra ES, Sato H, Mizutani U (2011) Philos Mag 91:4247 CrossRefGoogle Scholar
  11. 11.
    Mizutani U, Inukai M, Sato H, Zijlstra ES (2012) Philos Mag 92:1691 CrossRefGoogle Scholar
  12. 12.
    Ishimasa T, Kasano Y, Tachibana A, Kashimoto S, Osaka K (2007) Philos Mag 87:2887 CrossRefGoogle Scholar
  13. 13.
    Blaha P, Schwarz K, Madsen G, Kvasnicka D, Luitz J (2012) WIEN2k. http://www.wien2k.at/, last accessed on August 12, 2012
  14. 14.
    Mizutani U, Inukai M, Sato H, Zijlstra ES (2012) Chem Soc Rev 41:6799 CrossRefGoogle Scholar
  15. 15.
    Mizutani U, Inukai M, Sato H, Nozawa K, Zijlstra ES (2012) Presented at aperiodic 2012 Google Scholar
  16. 16.
    Villars P (1997) Pearson’s handbook, crystallographic data. ASM, Materials Park Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • U. Mizutani
    • 1
    Email author
  • M. Inukai
    • 2
  • H. Sato
    • 3
  • E. S. Zijlstra
    • 4
  1. 1.Nagoya Industrial Science Research InstituteNagoyaJapan
  2. 2.Toyota Technological InstituteHisakataNagoyaJapan
  3. 3.Aichi University of EducationAichiJapan
  4. 4.Theoretical PhysicsUniversity of KasselKasselGermany

Personalised recommendations